濮阳杆衣贸易有限公司

主頁 > 知識(shí)庫 > 解決Numpy與Pytorch彼此轉(zhuǎn)換時(shí)的坑

解決Numpy與Pytorch彼此轉(zhuǎn)換時(shí)的坑

熱門標(biāo)簽:白銀外呼系統(tǒng) 騰訊外呼線路 激戰(zhàn)2地圖標(biāo)注 公司電話機(jī)器人 哈爾濱ai外呼系統(tǒng)定制 唐山智能外呼系統(tǒng)一般多少錢 海南400電話如何申請(qǐng) 陜西金融外呼系統(tǒng) 廣告地圖標(biāo)注app

前言 ​  

最近使用 Numpy包與Pytorch寫神經(jīng)網(wǎng)絡(luò)時(shí),經(jīng)常需要兩者彼此轉(zhuǎn)換,故用此筆記記錄碼代碼時(shí)踩(菜)過的坑,網(wǎng)上有人說:

Pytorch 又被稱為 GPU 版的 Numpy,二者的許多功能都有良好的一一對(duì)應(yīng)。

​但在使用時(shí)還是得多多注意,一個(gè)不留神就陷入到了 一根煙一杯酒,一個(gè)Bug找一宿 的地步。

1.1、numpy ——> torch ​  

使用 torch.from_numpy() 轉(zhuǎn)換,需要注意,兩者共享內(nèi)存。例子如下:

import torch
import numpy as np

a = np.array([1,2,3])
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print('轉(zhuǎn)換后a', a)
print('轉(zhuǎn)換后b', b)

# 顯示

轉(zhuǎn)換后a [2 3 4]
轉(zhuǎn)換后b tensor([2, 3, 4], dtype=torch.int32)

1.2、torch——> numpy ​  

使用 .numpy() 轉(zhuǎn)換,同樣,兩者共享內(nèi)存。例子如下:

import torch
import numpy as np

a = torch.zeros((2, 3), dtype=torch.float)
c = a.numpy()
np.add(c, 1, out=c)
print('a:', a)
print('c:', c)

# 結(jié)果

a: tensor([[1., 1., 1.],
           [1., 1., 1.]])
c: [[1. 1. 1.]
  [1. 1. 1.]]

需要注意的是,如果將程序中的 np.add(c, 1, out=c) 改成 c = c + 1 會(huì)發(fā)現(xiàn)兩者貌似不共享內(nèi)存了,其實(shí)不然,原因是后者相當(dāng)于改變了 c 的存儲(chǔ)地址??梢允褂?id(c) 發(fā)現(xiàn)c的內(nèi)存位置變了。

補(bǔ)充:pytorch中tensor數(shù)據(jù)和numpy數(shù)據(jù)轉(zhuǎn)換中注意的一個(gè)問題

在pytorch中,把numpy.array數(shù)據(jù)轉(zhuǎn)換到張量tensor數(shù)據(jù)的常用函數(shù)是torch.from_numpy(array)或者torch.Tensor(array),第一種函數(shù)更常用。

下面通過代碼看一下區(qū)別:

import numpy as np
import torch

a=np.arange(6,dtype=int).reshape(2,3)
b=torch.from_numpy(a)
c=torch.Tensor(a)

a[0][0]=10
print(a,'\n',b,'\n',c)
[[10  1  2]
 [ 3  4  5]] 
 tensor([[10,  1,  2],
        [ 3,  4,  5]], dtype=torch.int32) 
 tensor([[0., 1., 2.],
        [3., 4., 5.]])

c[0][0]=10
print(a,'\n',b,'\n',c)
[[10  1  2]
 [ 3  4  5]] 
 tensor([[10,  1,  2],
        [ 3,  4,  5]], dtype=torch.int32) 
 tensor([[10.,  1.,  2.],
        [ 3.,  4.,  5.]])

print(b.type())
torch.IntTensor
print(c.type())
torch.FloatTensor

可以看出修改數(shù)組a的元素值,張量b的元素值也改變了,但是張量c卻不變。修改張量c的元素值,數(shù)組a和張量b的元素值都不變。

這說明torch.from_numpy(array)是做數(shù)組的淺拷貝,torch.Tensor(array)是做數(shù)組的深拷貝。

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • Pytorch之Tensor和Numpy之間的轉(zhuǎn)換的實(shí)現(xiàn)方法
  • python、PyTorch圖像讀取與numpy轉(zhuǎn)換實(shí)例
  • pytorch 實(shí)現(xiàn)tensor與numpy數(shù)組轉(zhuǎn)換
  • pytorch numpy list類型之間的相互轉(zhuǎn)換實(shí)例
  • 淺談pytorch和Numpy的區(qū)別以及相互轉(zhuǎn)換方法

標(biāo)簽:惠州 常德 上海 黔西 鷹潭 黑龍江 四川 益陽

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《解決Numpy與Pytorch彼此轉(zhuǎn)換時(shí)的坑》,本文關(guān)鍵詞  解決,Numpy,與,Pytorch,彼此,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《解決Numpy與Pytorch彼此轉(zhuǎn)換時(shí)的坑》相關(guān)的同類信息!
  • 本頁收集關(guān)于解決Numpy與Pytorch彼此轉(zhuǎn)換時(shí)的坑的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    嘉禾县| 景德镇市| 塔河县| 历史| 新源县| 宣武区| 广汉市| 玉环县| 乳源| 郁南县| 阿鲁科尔沁旗| 奈曼旗| 永德县| 明光市| 兴义市| 正镶白旗| 新干县| 桃园市| 交城县| 通许县| 桃江县| 乐至县| 金昌市| 南昌市| 成安县| 周宁县| 罗城| 嘉义市| 隆子县| 安宁市| 芦溪县| 牙克石市| 临沧市| 青岛市| 林周县| 清新县| 太原市| 武夷山市| 利津县| 澄江县| 峨眉山市|