濮阳杆衣贸易有限公司

主頁 > 知識庫 > 算法系列15天速成——第十三天 樹操作【下】

算法系列15天速成——第十三天 樹操作【下】

熱門標(biāo)簽:語音平臺系統(tǒng) 洛陽便宜外呼系統(tǒng)廠家 忻州外呼系統(tǒng)接口對接 嘟聲的電銷機(jī)器人 地圖標(biāo)注和圖片標(biāo)注 醫(yī)院地圖標(biāo)注 電銷機(jī)器人怎么收費(fèi) 滄州智能外呼系統(tǒng)收費(fèi) 湖北穩(wěn)定外呼系統(tǒng)

聽說赫夫曼勝過了他的導(dǎo)師,被認(rèn)為”青出于藍(lán)而勝于藍(lán)“,這句話也是我比較欣賞的,嘻嘻。

一  概念

    了解”赫夫曼樹“之前,幾個必須要知道的專業(yè)名詞可要熟練記住啊。

    1: 結(jié)點(diǎn)的權(quán)

            “權(quán)”就相當(dāng)于“重要度”,我們形象的用一個具體的數(shù)字來表示,然后通過數(shù)字的大小來決定誰重要,誰不重要。

    2: 路徑

             樹中從“一個結(jié)點(diǎn)"到“另一個結(jié)點(diǎn)“之間的分支。

    3: 路徑長度

             一個路徑上的分支數(shù)量。

    4: 樹的路徑長度

             從樹的根節(jié)點(diǎn)到每個節(jié)點(diǎn)的路徑長度之和。

    5: 節(jié)點(diǎn)的帶權(quán)路徑路勁長度

             其實(shí)也就是該節(jié)點(diǎn)到根結(jié)點(diǎn)的路徑長度*該節(jié)點(diǎn)的權(quán)。

    6:   樹的帶權(quán)路徑長度

             樹中各個葉節(jié)點(diǎn)的路徑長度*該葉節(jié)點(diǎn)的權(quán)的和,常用WPL(Weight Path Length)表示。

二: 構(gòu)建赫夫曼樹

        上面說了那么多,肯定是為下面做鋪墊,這里說赫夫曼樹,肯定是要說赫夫曼樹咋好咋好,赫夫曼樹是一種最優(yōu)二叉樹,

         因?yàn)樗腤PL是最短的,何以見得?我們可以上圖說話。

現(xiàn)在我們做一個WPL的對比:

圖A: WPL= 5*2 + 7*2 +2*2+13*2=54

圖B:WPL=5*3+2*3+7*2+13*1=48

 

我們對比一下,圖B的WPL最短的,地球人已不能阻止WPL還能比“圖B”的小,所以,“圖B"就是一顆赫夫曼樹,那么大家肯定

要問,如何構(gòu)建一顆赫夫曼樹,還是上圖說話。

 

第一步: 我們將所有的節(jié)點(diǎn)都作為獨(dú)根結(jié)點(diǎn)。

第二步:   我們將最小的C和A組建為一個新的二叉樹,權(quán)值為左右結(jié)點(diǎn)之和。

第三步: 將上一步組建的新節(jié)點(diǎn)加入到剩下的節(jié)點(diǎn)中,排除上一步組建過的左右子樹,我們選中B組建新的二叉樹,然后取權(quán)值。

第四步: 同上。

 

三: 赫夫曼編碼

      大家都知道,字符,漢字,數(shù)字在計(jì)算機(jī)中都是以0,1來表示的,相應(yīng)的存儲都是有一套編碼方案來支撐的,比如ASC碼。

 這樣才能在"編碼“和”解碼“的過程中不會成為亂碼,但是ASC碼不理想的地方就是等長的,其實(shí)我們都想用較少的空間來存儲

更多的東西,那么我們就要采用”不等長”的編碼方案來存儲,那么“何為不等長呢“?其實(shí)也就是出現(xiàn)次數(shù)比較多的字符我們采用短編碼,

出現(xiàn)次數(shù)較少的字符我們采用長編碼,恰好,“赫夫曼編碼“就是不等長的編碼。

    這里大家只要掌握赫夫曼樹的編碼規(guī)則:左子樹為0,右子樹為1,對應(yīng)的編碼后的規(guī)則是:從根節(jié)點(diǎn)到子節(jié)點(diǎn)

A: 111

B: 10

C: 110

D: 0

 

四: 實(shí)現(xiàn)

      不知道大家懂了沒有,不懂的話多看幾篇,下面說下赫夫曼的具體實(shí)現(xiàn)。

         第一步:構(gòu)建赫夫曼樹。

         第二步:對赫夫曼樹進(jìn)行編碼。

         第三步:壓縮操作。

         第四步:解壓操作。

 

1:首先看下赫夫曼樹的結(jié)構(gòu),這里字段的含義就不解釋了。

復(fù)制代碼 代碼如下:

#region 赫夫曼樹結(jié)構(gòu)
    /// summary>
/// 赫夫曼樹結(jié)構(gòu)
/// /summary>
    public class HuffmanTree
    {
        public int weight { get; set; }

        public int parent { get; set; }

        public int left { get; set; }

        public int right { get; set; }
    }
    #endregion

2: 創(chuàng)建赫夫曼樹,原理在上面已經(jīng)解釋過了,就是一步一步的向上搭建,這里要注意的二個性質(zhì)定理:

         當(dāng)葉子節(jié)點(diǎn)為N個,則需要N-1步就能搭建赫夫曼樹。

         當(dāng)葉子節(jié)點(diǎn)為N個,則赫夫曼樹的節(jié)點(diǎn)總數(shù)為:(2*N)-1個。

復(fù)制代碼 代碼如下:

#region 赫夫曼樹的創(chuàng)建
        /// summary>
/// 赫夫曼樹的創(chuàng)建
/// /summary>
/// param name="huffman">赫夫曼樹/param>
/// param name="leafNum">葉子節(jié)點(diǎn)/param>
/// param name="weight">節(jié)點(diǎn)權(quán)重/param>
        public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
        {
            //赫夫曼樹的節(jié)點(diǎn)總數(shù)
            int huffmanNode = 2 * leafNum - 1;

            //初始化節(jié)點(diǎn),賦予葉子節(jié)點(diǎn)值
            for (int i = 0; i huffmanNode; i++)
            {
                if (i leafNum)
                {
                    huffman[i].weight = weight[i];
                }
            }

            //這里面也要注意,4個節(jié)點(diǎn),其實(shí)只要3步就可以構(gòu)造赫夫曼樹
            for (int i = leafNum; i huffmanNode; i++)
            {
                int minIndex1;
                int minIndex2;
                SelectNode(huffman, i, out minIndex1, out minIndex2);

                //最后得出minIndex1和minindex2中實(shí)體的weight最小
                huffman[minIndex1].parent = i;
                huffman[minIndex2].parent = i;

                huffman[i].left = minIndex1;
                huffman[i].right = minIndex2;

                huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
            }

            return huffman;
        }
        #endregion

        #region 選出葉子節(jié)點(diǎn)中最小的二個節(jié)點(diǎn)
        /// summary>
/// 選出葉子節(jié)點(diǎn)中最小的二個節(jié)點(diǎn)
/// /summary>
/// param name="huffman">/param>
/// param name="searchNodes">要查找的結(jié)點(diǎn)數(shù)/param>
/// param name="minIndex1">/param>
/// param name="minIndex2">/param>
        public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
        {
            HuffmanTree minNode1 = null;

            HuffmanTree minNode2 = null;

            //最小節(jié)點(diǎn)在赫夫曼樹中的下標(biāo)
            minIndex1 = minIndex2 = 0;

            //查找范圍
            for (int i = 0; i searchNodes; i++)
            {
                ///只有獨(dú)根樹才能進(jìn)入查找范圍
                if (huffman[i].parent == 0)
                {
                    //如果為null,則認(rèn)為當(dāng)前實(shí)體為最小
                    if (minNode1 == null)
                    {
                        minIndex1 = i;

                        minNode1 = huffman[i];

                        continue;
                    }

                    //如果為null,則認(rèn)為當(dāng)前實(shí)體為最小
                    if (minNode2 == null)
                    {
                        minIndex2 = i;

                        minNode2 = huffman[i];

                        //交換一個位置,保證minIndex1為最小,為后面判斷做準(zhǔn)備
                        if (minNode1.weight > minNode2.weight)
                        {
                            //節(jié)點(diǎn)交換
                            var temp = minNode1;
                            minNode1 = minNode2;
                            minNode2 = temp;

                            //下標(biāo)交換
                            var tempIndex = minIndex1;
                            minIndex1 = minIndex2;
                            minIndex2 = tempIndex;

                            continue;
                        }
                    }
                    if (minNode1 != null minNode2 != null)
                    {
                        if (huffman[i].weight = minNode1.weight)
                        {
                            //將min1臨時轉(zhuǎn)存給min2
                            minNode2 = minNode1;
                            minNode1 = huffman[i];

                            //記錄在數(shù)組中的下標(biāo)
                            minIndex2 = minIndex1;
                            minIndex1 = i;
                        }
                        else
                        {
                            if (huffman[i].weight minNode2.weight)
                            {
                                minNode2 = huffman[i];

                                minIndex2 = i;
                            }
                        }
                    }
                }
            }
        }
        #endregion

3:對哈夫曼樹進(jìn)行編碼操作,形成一套“模板”,效果跟ASC模板一樣,不過一個是不等長,一個是等長。

復(fù)制代碼 代碼如下:

#region 赫夫曼編碼
        /// summary>
/// 赫夫曼編碼
/// /summary>
/// param name="huffman">/param>
/// param name="leafNum">/param>
/// param name="huffmanCode">/param>
        public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
        {
            int current = 0;

            int parent = 0;

            string[] huffmanCode = new string[leafNum];

            //四個葉子節(jié)點(diǎn)的循環(huán)
            for (int i = 0; i leafNum; i++)
            {
                //單個字符的編碼串
                string codeTemp = string.Empty;

                current = i;

                //第一次獲取最左節(jié)點(diǎn)
                parent = huffman[current].parent;

                while (parent != 0)
                {
                    //如果父節(jié)點(diǎn)的左子樹等于當(dāng)前節(jié)點(diǎn)就標(biāo)記為0
                    if (current == huffman[parent].left)
                        codeTemp += "0";
                    else
                        codeTemp += "1";

                    current = parent;
                    parent = huffman[parent].parent;
                }

                huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
            }
            return huffmanCode;
        }
        #endregion

4:模板生成好了,我們就要對指定的測試數(shù)據(jù)進(jìn)行壓縮處理

復(fù)制代碼 代碼如下:

#region 對指定字符進(jìn)行壓縮
        /// summary>
/// 對指定字符進(jìn)行壓縮
/// /summary>
/// param name="huffmanCode">/param>
/// param name="alphabet">/param>
/// param name="test">/param>
        public string Encode(string[] huffmanCode, string[] alphabet, string test)
        {
            //返回的0,1代碼
            string encodeStr = string.Empty;

            //對每個字符進(jìn)行編碼
            for (int i = 0; i test.Length; i++)
            {
                //在模版里面查找
                for (int j = 0; j alphabet.Length; j++)
                {
                    if (test[i].ToString() == alphabet[j])
                    {
                        encodeStr += huffmanCode[j];
                    }
                }
            }

            return encodeStr;
        }
        #endregion

5: 最后也就是對壓縮的數(shù)據(jù)進(jìn)行還原操作。

復(fù)制代碼 代碼如下:

#region 對指定的二進(jìn)制進(jìn)行解壓
        /// summary>
/// 對指定的二進(jìn)制進(jìn)行解壓
/// /summary>
/// param name="huffman">/param>
/// param name="leafNum">/param>
/// param name="alphabet">/param>
/// param name="test">/param>
/// returns>/returns>
        public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
        {
            string decodeStr = string.Empty;

            //所有要解碼的字符
            for (int i = 0; i test.Length; )
            {
                int j = 0;
                //赫夫曼樹結(jié)構(gòu)模板(用于循環(huán)的解碼單個字符)
                for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                {
                    if (test[i].ToString() == "0")
                    {
                        j = huffman[j].left;
                    }
                    if (test[i].ToString() == "1")
                    {
                        j = huffman[j].right;
                    }
                    i++;
                }
                decodeStr += alphabet[j];
            }
            return decodeStr;
        }

        #endregion

最后上一下總的運(yùn)行代碼

復(fù)制代碼 代碼如下:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace HuffmanTree
{
    class Program
    {
        static void Main(string[] args)
        {
            //有四個葉節(jié)點(diǎn)
            int leafNum = 4;

            //赫夫曼樹中的節(jié)點(diǎn)總數(shù)
            int huffmanNodes = 2 * leafNum - 1;

            //各節(jié)點(diǎn)的權(quán)值
            int[] weight = { 5, 7, 2, 13 };

            string[] alphabet = { "A", "B", "C", "D" };

            string testCode = "DBDBDABDCDADBDADBDADACDBDBD";

            //赫夫曼樹用數(shù)組來保存,每個赫夫曼都作為一個實(shí)體存在
            HuffmanTree[] huffman = new HuffmanTree[huffmanNodes].Select(i => new HuffmanTree() { }).ToArray();

            HuffmanTreeManager manager = new HuffmanTreeManager();

            manager.CreateTree(huffman, leafNum, weight);

            string[] huffmanCode = manager.HuffmanCoding(huffman, leafNum);

            for (int i = 0; i leafNum; i++)
            {
                Console.WriteLine("字符:{0},權(quán)重:{1},編碼為:{2}", alphabet[i], huffman[i].weight, huffmanCode[i]);
            }

            Console.WriteLine("原始的字符串為:" + testCode);

            string encode = manager.Encode(huffmanCode, alphabet, testCode);

            Console.WriteLine("被編碼的字符串為:" + encode);

            string decode = manager.Decode(huffman, huffmanNodes, alphabet, encode);

            Console.WriteLine("解碼后的字符串為:" + decode);
        }
    }

    #region 赫夫曼樹結(jié)構(gòu)
    /// summary>
/// 赫夫曼樹結(jié)構(gòu)
/// /summary>
    public class HuffmanTree
    {
        public int weight { get; set; }

        public int parent { get; set; }

        public int left { get; set; }

        public int right { get; set; }
    }
    #endregion

    /// summary>
/// 赫夫曼樹的操作類
/// /summary>
    public class HuffmanTreeManager
    {
        #region 赫夫曼樹的創(chuàng)建
        /// summary>
/// 赫夫曼樹的創(chuàng)建
/// /summary>
/// param name="huffman">赫夫曼樹/param>
/// param name="leafNum">葉子節(jié)點(diǎn)/param>
/// param name="weight">節(jié)點(diǎn)權(quán)重/param>
        public HuffmanTree[] CreateTree(HuffmanTree[] huffman, int leafNum, int[] weight)
        {
            //赫夫曼樹的節(jié)點(diǎn)總數(shù)
            int huffmanNode = 2 * leafNum - 1;

            //初始化節(jié)點(diǎn),賦予葉子節(jié)點(diǎn)值
            for (int i = 0; i huffmanNode; i++)
            {
                if (i leafNum)
                {
                    huffman[i].weight = weight[i];
                }
            }

            //這里面也要注意,4個節(jié)點(diǎn),其實(shí)只要3步就可以構(gòu)造赫夫曼樹
            for (int i = leafNum; i huffmanNode; i++)
            {
                int minIndex1;
                int minIndex2;
                SelectNode(huffman, i, out minIndex1, out minIndex2);

                //最后得出minIndex1和minindex2中實(shí)體的weight最小
                huffman[minIndex1].parent = i;
                huffman[minIndex2].parent = i;

                huffman[i].left = minIndex1;
                huffman[i].right = minIndex2;

                huffman[i].weight = huffman[minIndex1].weight + huffman[minIndex2].weight;
            }

            return huffman;
        }
        #endregion

        #region 選出葉子節(jié)點(diǎn)中最小的二個節(jié)點(diǎn)
        /// summary>
/// 選出葉子節(jié)點(diǎn)中最小的二個節(jié)點(diǎn)
/// /summary>
/// param name="huffman">/param>
/// param name="searchNodes">要查找的結(jié)點(diǎn)數(shù)/param>
/// param name="minIndex1">/param>
/// param name="minIndex2">/param>
        public void SelectNode(HuffmanTree[] huffman, int searchNodes, out int minIndex1, out int minIndex2)
        {
            HuffmanTree minNode1 = null;

            HuffmanTree minNode2 = null;

            //最小節(jié)點(diǎn)在赫夫曼樹中的下標(biāo)
            minIndex1 = minIndex2 = 0;

            //查找范圍
            for (int i = 0; i searchNodes; i++)
            {
                ///只有獨(dú)根樹才能進(jìn)入查找范圍
                if (huffman[i].parent == 0)
                {
                    //如果為null,則認(rèn)為當(dāng)前實(shí)體為最小
                    if (minNode1 == null)
                    {
                        minIndex1 = i;

                        minNode1 = huffman[i];

                        continue;
                    }

                    //如果為null,則認(rèn)為當(dāng)前實(shí)體為最小
                    if (minNode2 == null)
                    {
                        minIndex2 = i;

                        minNode2 = huffman[i];

                        //交換一個位置,保證minIndex1為最小,為后面判斷做準(zhǔn)備
                        if (minNode1.weight > minNode2.weight)
                        {
                            //節(jié)點(diǎn)交換
                            var temp = minNode1;
                            minNode1 = minNode2;
                            minNode2 = temp;

                            //下標(biāo)交換
                            var tempIndex = minIndex1;
                            minIndex1 = minIndex2;
                            minIndex2 = tempIndex;

                            continue;
                        }
                    }
                    if (minNode1 != null minNode2 != null)
                    {
                        if (huffman[i].weight = minNode1.weight)
                        {
                            //將min1臨時轉(zhuǎn)存給min2
                            minNode2 = minNode1;
                            minNode1 = huffman[i];

                            //記錄在數(shù)組中的下標(biāo)
                            minIndex2 = minIndex1;
                            minIndex1 = i;
                        }
                        else
                        {
                            if (huffman[i].weight minNode2.weight)
                            {
                                minNode2 = huffman[i];

                                minIndex2 = i;
                            }
                        }
                    }
                }
            }
        }
        #endregion

        #region 赫夫曼編碼
        /// summary>
/// 赫夫曼編碼
/// /summary>
/// param name="huffman">/param>
/// param name="leafNum">/param>
/// param name="huffmanCode">/param>
        public string[] HuffmanCoding(HuffmanTree[] huffman, int leafNum)
        {
            int current = 0;

            int parent = 0;

            string[] huffmanCode = new string[leafNum];

            //四個葉子節(jié)點(diǎn)的循環(huán)
            for (int i = 0; i leafNum; i++)
            {
                //單個字符的編碼串
                string codeTemp = string.Empty;

                current = i;

                //第一次獲取最左節(jié)點(diǎn)
                parent = huffman[current].parent;

                while (parent != 0)
                {
                    //如果父節(jié)點(diǎn)的左子樹等于當(dāng)前節(jié)點(diǎn)就標(biāo)記為0
                    if (current == huffman[parent].left)
                        codeTemp += "0";
                    else
                        codeTemp += "1";

                    current = parent;
                    parent = huffman[parent].parent;
                }

                huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
            }
            return huffmanCode;
        }
        #endregion

        #region 對指定字符進(jìn)行壓縮
        /// summary>
/// 對指定字符進(jìn)行壓縮
/// /summary>
/// param name="huffmanCode">/param>
/// param name="alphabet">/param>
/// param name="test">/param>
        public string Encode(string[] huffmanCode, string[] alphabet, string test)
        {
            //返回的0,1代碼
            string encodeStr = string.Empty;

            //對每個字符進(jìn)行編碼
            for (int i = 0; i test.Length; i++)
            {
                //在模版里面查找
                for (int j = 0; j alphabet.Length; j++)
                {
                    if (test[i].ToString() == alphabet[j])
                    {
                        encodeStr += huffmanCode[j];
                    }
                }
            }

            return encodeStr;
        }
        #endregion

        #region 對指定的二進(jìn)制進(jìn)行解壓
        /// summary>
/// 對指定的二進(jìn)制進(jìn)行解壓
/// /summary>
/// param name="huffman">/param>
/// param name="leafNum">/param>
/// param name="alphabet">/param>
/// param name="test">/param>
/// returns>/returns>
        public string Decode(HuffmanTree[] huffman, int huffmanNodes, string[] alphabet, string test)
        {
            string decodeStr = string.Empty;

            //所有要解碼的字符
            for (int i = 0; i test.Length; )
            {
                int j = 0;
                //赫夫曼樹結(jié)構(gòu)模板(用于循環(huán)的解碼單個字符)
                for (j = huffmanNodes - 1; (huffman[j].left != 0 || huffman[j].right != 0); )
                {
                    if (test[i].ToString() == "0")
                    {
                        j = huffman[j].left;
                    }
                    if (test[i].ToString() == "1")
                    {
                        j = huffman[j].right;
                    }
                    i++;
                }
                decodeStr += alphabet[j];
            }
            return decodeStr;
        }

        #endregion
    }
}

您可能感興趣的文章:
  • 算法系列15天速成 第十四天 圖【上】
  • 算法系列15天速成 第十二天 樹操作【中】
  • 算法系列15天速成 第十一天 樹操作(上)
  • 算法系列15天速成 第十天 棧
  • 算法系列15天速成 第八天 線性表【下】
  • 算法系列15天速成 第九天 隊(duì)列
  • 算法系列15天速成 第七天 線性表【上】
  • 算法系列15天速成 第六天 五大經(jīng)典查找【下】
  • 算法系列15天速成 第五天 五大經(jīng)典查找【中】
  • 算法系列15天速成 第四天 五大經(jīng)典查找【上】
  • 算法系列15天速成 第三天 七大經(jīng)典排序【下】
  • 算法系列15天速成 第二天 七大經(jīng)典排序【中】
  • 算法系列15天速成 第一天 七大經(jīng)典排序【上】
  • 算法系列15天速成——第十五天 圖【下】(大結(jié)局)

標(biāo)簽:宜賓 巴彥淖爾 山南 日照 內(nèi)蒙古 96 防城港 定州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《算法系列15天速成——第十三天 樹操作【下】》,本文關(guān)鍵詞  算法,系列,15天,速成,第十,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《算法系列15天速成——第十三天 樹操作【下】》相關(guān)的同類信息!
  • 本頁收集關(guān)于算法系列15天速成——第十三天 樹操作【下】的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    上饶县| 沅陵县| 新兴县| 台中市| 时尚| 杂多县| 尖扎县| 永靖县| 五华县| 肥东县| 民丰县| 普宁市| 玛多县| 丹东市| 济源市| 崇信县| 怀宁县| 八宿县| 青州市| 庄浪县| 青铜峡市| 望江县| 龙海市| 龙门县| 天长市| 兴安盟| 桦甸市| 侯马市| 长阳| 乌拉特前旗| 措勤县| 泸州市| 来凤县| 瑞安市| 屯门区| 灌阳县| 长汀县| 大理市| 乃东县| 昭苏县| 武川县|