濮阳杆衣贸易有限公司

主頁 > 知識庫 > Pytorch教程內(nèi)置模型源碼實現(xiàn)

Pytorch教程內(nèi)置模型源碼實現(xiàn)

熱門標簽:哈爾濱外呼系統(tǒng)代理商 南昌辦理400電話怎么安裝 電話機器人適用業(yè)務 徐州天音防封電銷卡 不錯的400電話辦理 佛山防封外呼系統(tǒng)收費 獲客智能電銷機器人 鄭州智能外呼系統(tǒng)運營商 湛江電銷防封卡

翻譯自
https://pytorch.org/docs/stable/torchvision/models.html
主要講解了torchvision.models的使用

torchvision.models

torchvision.models中包含了如下模型

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception v3

隨機初始化模型

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
desnet = models.densenet161()
inception =models.inception_v3()

使用預訓練好的參數(shù)

pytorch提供了預訓練的模型,使用torch.utils.model_zoo ,通過讓參數(shù)pretrained =True來構建訓練好的模型

方法如下

resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)

實例化一個預訓練好的模型會自動下載權重到緩存目錄,這個權重存儲路徑可以通過環(huán)境變量TORCH_MODEL_ZOO來指定,詳細的參考torch.utils.model_zoo.load_url() 這個函數(shù)

有的模型試驗了不同的訓練和評估,例如batch normalization。使用model.train()和model.eval()來轉(zhuǎn)換,查看train() or eval() 來了解更多細節(jié)

所有的預訓練網(wǎng)絡希望使用相同的方式進行歸一化,例如圖片是mini-batch形式的3通道RGB圖片(3HW),H和W最少是244,。 圖像必須加載到[0,1]范圍內(nèi),然后使用均值=[0.485,0.456,0.406]和std =[0.229, 0.224, 0.225]進行歸一化。

您可以使用以下轉(zhuǎn)換來normalzie:

normalize = trainform.Normalize9mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])

在這里我們可以找到一個在Imagenet上的這樣的例子
https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101

目前這些模型的效果如下

下面是模型源碼的具體實現(xiàn),具體實現(xiàn)大家可以閱讀源碼

###ALEXNET
torchvision.models.alexnet(pretrained=False, **kwargs)[SOURCE]
AlexNet model architecture from the “One weird trick…” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
###VGG
torchvision.models.vgg11(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg11_bn(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13_bn(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration “E”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19_bn(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration ‘E') with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
RESNET
torchvision.models.resnet18(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-18 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet34(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-34 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet50(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-50 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet101(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-101 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet152(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-152 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
SQUEEZENET
torchvision.models.squeezenet1_0(pretrained=False, **kwargs)[SOURCE]
SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5MB model size” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.squeezenet1_1(pretrained=False, **kwargs)[SOURCE]
SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
DENSENET
torchvision.models.densenet121(pretrained=False, **kwargs)[SOURCE]
Densenet-121 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet169(pretrained=False, **kwargs)[SOURCE]
Densenet-169 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet161(pretrained=False, **kwargs)[SOURCE]
Densenet-161 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet201(pretrained=False, **kwargs)[SOURCE]
Densenet-201 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
INCEPTION V3
torchvision.models.inception_v3(pretrained=False, **kwargs)[SOURCE]
Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet

以上就是Pytorch教程內(nèi)置模型源碼實現(xiàn)的詳細內(nèi)容,更多關于Pytorch內(nèi)置模型的資料請關注腳本之家其它相關文章!

您可能感興趣的文章:
  • pytorch教程之Tensor的值及操作使用學習
  • 使用Pytorch搭建模型的步驟
  • 如何使用Pytorch搭建模型
  • pytorch構建網(wǎng)絡模型的4種方法

標簽:懷化 紹興 呂梁 廣西 安康 吉安 蕪湖 蘭州

巨人網(wǎng)絡通訊聲明:本文標題《Pytorch教程內(nèi)置模型源碼實現(xiàn)》,本文關鍵詞  Pytorch,教程,內(nèi)置,模型,源碼,;如發(fā)現(xiàn)本文內(nèi)容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Pytorch教程內(nèi)置模型源碼實現(xiàn)》相關的同類信息!
  • 本頁收集關于Pytorch教程內(nèi)置模型源碼實現(xiàn)的相關信息資訊供網(wǎng)民參考!
  • 推薦文章
    夹江县| 东城区| 望谟县| 长武县| 碌曲县| 镇原县| 吉隆县| 陆河县| 思茅市| 炉霍县| 肥西县| 霸州市| 莒南县| 通海县| 久治县| 沂南县| 修文县| 乌兰察布市| 吉隆县| 乌恰县| 商南县| 榆林市| 舒兰市| 廉江市| 隆回县| 株洲市| 中阳县| 瑞丽市| 尼玛县| 什邡市| 宣汉县| 漯河市| 井陉县| 定西市| 阳谷县| 依安县| 红河县| 卓资县| 武胜县| 白朗县| 二连浩特市|