一、 json模塊
JSON(JavaScript Object Notation)是一種輕量級的數據交換格式,易于閱讀和編寫,同時也易于機器解析和生成,并有效地提升網絡傳輸效率。
- json.loads():將json格式的str轉化成python的數據格式;
- json.loads():將python的數據格式(字典或列表)轉化成json格式;
# 如何將json數據解析成我們所熟悉的Python數據類型?
import json
# 將json格式的str轉化成python的數據格式:字典
dic = json.loads('{"name":"Tom","age":23}')
res = json.loads('["name","age","gender"]')
print(f'利用loads將json字符串轉化成Python數據類型{dic}',type(dic))
print(f'利用loads將json字符串轉化成Python數據類型{res}',type(res))
![](http://img.jbzj.com/file_images/article/202102/202125104637416.png?202115104647)
dics = {"name":"Tom","age":23}
result = json.dumps(dics)
print(type(result))
result
![](http://img.jbzj.com/file_images/article/202102/202125104712374.png?202115104719)
二、通過Python實現疫情地圖可視化
需求:爬取疫情的數據、如何處理json數據以及根據疫情數據如何利用pyecharts繪制疫情地圖。
![](http://img.jbzj.com/file_images/article/202102/202125104753859.png?20211510481)
![](http://img.jbzj.com/file_images/article/202102/202125104908701.png?202115105922)
1.數據的獲取(基于request模塊)
import requests
import json
# 國內疫情數據
China_url = 'https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5'
headers = {
# 瀏覽器偽裝
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36',
'referer': 'https://news.qq.com/',
}
# 發(fā)起get請求,獲取響應數據
response = requests.get(China_url,headers=headers).json()
data = json.loads(response['data'])
# 保存數據
with open('./2021-02-03國內疫情.json','w',encoding='utf-8') as f:
# 不采用ASCII編碼
f.write(json.dumps(data,ensure_ascii=False,indent=2))
爬取的數據保存格式為json,開頭的部分數據如下:
![](http://img.jbzj.com/file_images/article/202102/202125105013079.png?202115105022)
2.將json格式的數據保存到Excel
無論是json數據存儲的,還是Python的基本數據類型存儲的,對于數據分析都不是很友好,所以我們可以將其數據存儲類型轉化為pandas的DataFrame類型,因為DataFrame和Excel可以更好的相互轉換。
生成的數據模式如下:
![](http://img.jbzj.com/file_images/article/202102/202125105451753.png?20211510550)
將以上的數據進行處理,獲得Excel表一樣規(guī)范的數據格式。
import pandas as pd
chinaTotalData = pd.DataFrame(china_citylist)
# 將整體數據chinaTotalData中的today和total數據添加到DataFrame中
# 處理total字典里面的各個數據項
# ======================================================================
confirmlist = []
suspectlist = []
deadlist = []
heallist = []
deadRatelist = []
healRatelist = []
# print(chinaTotalData['total'].values.tolist()[0])
for value in chinaTotalData['total'].values.tolist():
confirmlist.append(value['confirm'])
suspectlist.append(value['suspect'])
deadlist.append(value['dead'])
heallist.append(value['heal'])
deadRatelist.append(value['deadRate'])
healRatelist.append(value['healRate'])
chinaTotalData['confirm'] = confirmlist
chinaTotalData['suspect'] = suspectlist
chinaTotalData['dead'] = deadlist
chinaTotalData['heal'] = heallist
chinaTotalData['deadRate'] = deadRatelist
chinaTotalData['healRate'] = healRatelist
# ===================================================================
# 創(chuàng)建全國today數據
today_confirmlist = []
today_confirmCutslist = []
for value in chinaTotalData['today'].values.tolist():
today_confirmlist.append(value['confirm'])
today_confirmCutslist.append(value['confirmCuts'])
chinaTotalData['today_confirm'] = today_confirmlist
chinaTotalData['today_confirmCuts'] = today_confirmCutslist
# ==================================================================
# 刪除total、today兩列
chinaTotalData.drop(['total','today'],axis=1,inplace=True)
chinaTotalData.head()
# 將其保存到Excel中
chinaTotalData.to_excel('2021-02-03國內疫情.xlsx',index=False)
處理好的數據結構如下表:
![](http://img.jbzj.com/file_images/article/202102/202125105537940.png?202115105545)
3.應用pyecharts進行數據可視化
pyecharts是一款將python與echarts結合的強大的數據可視化工具。繪制出來的圖比Python的Matplotlib簡單美觀。使用之前需要在Python環(huán)境中按照pycharts。在終端中輸入命令:pip install pyecharts
利用pyecharts繪制疫情地圖
根據上面的疫情數據,我們可以利用其畫出全國的疫情地圖
在繪制前,我們需要安裝echarts的地圖包(可根據不同的地圖需求進行安裝)
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-china-countries-pypkg
pip install echarts-united-kingdom-pypkg
# 導入對應的繪圖工具包
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Map
df = pd.read_excel('./2021-02-03國內疫情.xlsx')
# 1.根據繪制國內總疫情圖(確診)
data = df.groupby(by='province',as_index=False).sum()
data_list = list(zip(data['province'].values.tolist(),data['confirm'].values.tolist()))
# 數據格式[(黑龍江,200),(吉林,300),...]
def map_china() -> Map:
c = (
Map()
.add(series_name="確診病例",data_pair=data_list,maptype='china')
.set_global_opts(
title_opts = opts.TitleOpts(title='疫情地圖'),
visualmap_opts=opts.VisualMapOpts(is_piecewise=True,
pieces = [{"max":9, "min":0, "label":"0-9","color":"#FFE4E1"},
{"max":99, "min":10, "label":"10-99","color":"#FF7F50"},
{"max":499, "min":100, "label":"100-4999","color":"#F08080"},
{"max":999, "min":500, "label":"500-999","color":"#CD5C5C"},
{"max":9999, "min":1000, "label":"1000-9999","color":"#990000"},
{"max":99999, "min":10000, "label":"10000-99999","color":"#660000"},]
)
)
)
return c
d_map = map_china()
d_map.render("mapEchrts.html")
最終的運行效果如下:
![](http://img.jbzj.com/file_images/article/202102/202125105645273.png?202115105652)
注:以上的運行環(huán)境是Python3.7版本,IDE是基于瀏覽器端的Jupter Notebook。
以上就是Python實現疫情地圖可視化的詳細內容,更多關于python 疫情地圖可視化的資料請關注腳本之家其它相關文章!
您可能感興趣的文章:- python用pyecharts實現地圖數據可視化
- python-地圖可視化組件folium的操作
- python使用pyecharts庫畫地圖數據可視化的實現
- python用folium繪制地圖并設置彈窗
- Python 使用folium繪制leaflet地圖的實現方法
- python使用folium庫繪制地圖點擊框
- Python地理地圖可視化folium標記點彈窗設置代碼(推薦)