濮阳杆衣贸易有限公司

主頁 > 知識庫 > OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)

OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)

熱門標(biāo)簽:在哪里辦理400電話號碼 原裝電話機(jī)器人 江蘇客服外呼系統(tǒng)廠家 清遠(yuǎn)360地圖標(biāo)注方法 400電話申請服務(wù)商選什么 千陽自動外呼系統(tǒng) 西藏智能外呼系統(tǒng)五星服務(wù) 工廠智能電話機(jī)器人 平頂山外呼系統(tǒng)免費(fèi)

一、前言

如果你自己打印過東西,應(yīng)該有過這種經(jīng)歷。如果用自己拍的圖片,在手機(jī)上看感覺還是清晰可見,但是一打印出來就是漆黑一片。比如下面這兩張圖片:

因?yàn)樽筮叺膱D片有大片陰影,所有打印出來的圖片不堪入目(因?yàn)榇蛴∫?毛錢,所以第二張圖片只是我用程序模擬的效果)。

那有什么辦法可以解決嗎?答案是肯定的,今天我們就來探討幾個去除陰影的方法。

二、如何去除陰影?

首先為了方便處理,我們通常會對圖片進(jìn)行灰度轉(zhuǎn)換(即將圖片轉(zhuǎn)換成只有一個圖層的灰色圖像)。

然后我們分析一下,在上面的圖片中有三個主色調(diào),分別是字體顏色(黑色)、紙張顏色(偏白)、陰影顏色(灰色)。知道這點(diǎn)后我們就好辦了。我們只需要把灰色和白色部分都處理為白色就好了。

那要我怎么才知道白色和灰色區(qū)域呢?對于一個8位的灰度圖,黑色部分的像素大致在0-30左右。白色和灰色應(yīng)該在31-255左右(這個范圍只是大致估計(jì),實(shí)際情況需要看圖片)。如圖:

左邊是原圖,右邊是處理后的圖片。我們將灰色和接近白色的部分都處理成了白色。

那下面我們就開始處理吧。

三、numpy的ndarray數(shù)組

可能有些讀者沒有接觸過numpy,這里簡單說一下。

numpy是一個第三方的模塊,用它我們可以很方便的處理多維數(shù)組(ndarray數(shù)組)。而圖片在OpenCV中的存儲方式正好是ndarray,所以我們對數(shù)組的操作就是對圖片的操作。

在使用之前我們需要安裝一下OpenCV模塊:

pip install opencv-python

在安裝OpenCV時會自動安裝numpy。

下面我們主要是看看布爾索引的操作,先看下面代碼:

import numpy as np
# 創(chuàng)建一個元素為1, 0, 1, 1的ndarray數(shù)組
arr = np.array([1, 0, 1, 1])
# 判斷數(shù)組中有沒有0
res = arr == 0
# 將數(shù)組中為0的元素賦值為10
arr[res] = 10

如果沒有接觸過numpy會不太理解上面的語法。我們來詳細(xì)說一下:

創(chuàng)建ndarray數(shù)組:我們通過np.array可以將現(xiàn)有的列表裝換成一個ndarray對象,這個很好理解

判斷數(shù)組中有沒有0:我們可以直接用ndarray對象來判斷,比如:arr == 0,他會返回一個元素結(jié)構(gòu)和數(shù)量一樣的ndarray對象。但是返回的對象原始類型式bool,我們來看看res的輸出:

[False True False False]

從結(jié)果可以看出,我們比較arr==0就是對數(shù)組中每個元素進(jìn)行比較,并返回比較的布爾值。

將數(shù)組中為0的元素賦值為10:而最難理解的arr[res]操作。它其實(shí)就是拿到res中為True的視圖,比如上面的結(jié)果是第二個為True則只會返回第二個元素的視圖。我們執(zhí)行下面的代碼:

arr[res] = 10

就是把對應(yīng)res為True的部分賦值為10,也就是將arr中值為0的部分賦值為10。

下面是arr最后的結(jié)果:

[ 1 10 1 1]

可以看到原本的0處理為了1。

四、去除陰影

現(xiàn)在我們知道了布爾索引,我們可以對圖片進(jìn)行處理了。我們只需要讀取圖片,然后將像素值大于30的部分處理為白色就好了。下面是我們的代碼:

import cv2
# 讀取圖片
img = cv2.imread('page.jpg', 0)
# 將像素值大于30的部分修改為255(白色)
img[img > 30] = 255
# 保存修改后的圖片
cv2.imwrite('res.jpg', img)

上面的代碼非常簡單,我們使用cv2.imread函數(shù)讀取圖片,第一個參數(shù)是圖片路徑,第二個參數(shù)表示讀取為灰度圖。我們來看看效果圖:

可以看到陰影部分被很好地去除了。有些字比較模糊,我們可以通過調(diào)節(jié)灰白色地范圍調(diào)整。比如:

img[img > 40] = 255

具體的值就要根據(jù)要處理的圖片來決定了。

五、改進(jìn)

對于上面地處理,還可以做一個小小地改進(jìn)。我們可以讓紙張顏色不那么白,我們來看改進(jìn)后的代碼:

import cv2
import numpy as np
img = cv2.imread('page.jpg', 0)
# 計(jì)算灰白色部分像素的均值
pixel = int(np.mean(img[img > 140]))
# 把灰白色部分修改為與背景接近的顏色
img[img > 30] = pixel
cv2.imwrite('res.jpg', img)

在上面的代碼中我們不再是將灰白色部分設(shè)置為255,而是事先計(jì)算了一個數(shù)值。

pixel = int(np.mean(img[img > 140]))

猜測陰影部分的顏色值小于140,因此先索引出圖像中大于140的部分。然后求平均值,這樣我們算出來的大致就是原圖的背景顏色,然后將圖片不是文字的部分處理為背景顏色,就是最終結(jié)果了。下面是我們的效果圖:

可以看到這次效果要更好了。但是因?yàn)楸尘岸际且粋€顏色,所以看起來還是會有一些差別。

不過有一點(diǎn)需要說一下,上面的操作只適用于比較簡單的圖片,比如試卷這種。

到此這篇關(guān)于OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)的文章就介紹到這了,更多相關(guān)OpenCV 去除圖片陰影內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python 基于opencv去除圖片陰影

標(biāo)簽:錦州 日照 白城 天水 西安 股票 安慶 隨州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)》,本文關(guān)鍵詞  OpenCV,如何,去除,圖片,中的,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)》相關(guān)的同類信息!
  • 本頁收集關(guān)于OpenCV如何去除圖片中的陰影的實(shí)現(xiàn)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    南陵县| 台中市| 博客| 陆河县| 澄江县| 白城市| 沛县| 隆尧县| 成安县| 七台河市| 屏东县| 义乌市| 苗栗县| 九江市| 琼海市| 项城市| 孟村| 青龙| 顺平县| 佳木斯市| 黄陵县| 柳林县| 丹寨县| 台中县| 嵩明县| 岫岩| 玛纳斯县| 柳林县| 哈巴河县| 临桂县| 新晃| 西林县| 新田县| 河曲县| 麟游县| 闽清县| 清苑县| 湘潭市| 佛冈县| 仪陇县| 历史|