濮阳杆衣贸易有限公司

主頁(yè) > 知識(shí)庫(kù) > python爬蟲(chóng)之教你如何爬取地理數(shù)據(jù)

python爬蟲(chóng)之教你如何爬取地理數(shù)據(jù)

熱門(mén)標(biāo)簽:上海機(jī)器人外呼系統(tǒng)哪家好 315電話機(jī)器人廣告 南京銷售外呼系統(tǒng)軟件 地圖標(biāo)注的意義點(diǎn) 浙江電銷卡外呼系統(tǒng)好用嗎 房產(chǎn)電銷外呼系統(tǒng) 蓋州市地圖標(biāo)注 地圖制圖標(biāo)注位置改變是移位嗎 地圖標(biāo)注微信發(fā)送位置不顯示

一、shapely模塊

1、shapely

shapely是python中開(kāi)源的針對(duì)空間幾何進(jìn)行處理的模塊,支持點(diǎn)、線、面等基本幾何對(duì)象類型以及相關(guān)空間操作。

2、point→Point類

curve→LineString和LinearRing類;
surface→Polygon類
集合方法分別對(duì)應(yīng)MultiPoint、MultiLineString、MultiPolygon

3、導(dǎo)入所需模塊

# 導(dǎo)入所需模塊
from shapely import geometry as geo
from shapely import wkt
from shapely import ops
import numpy as np
from shapely.geometry.polygon import LinearRing
from shapely.geometry import Polygon
from shapely.geometry import asPoint, asLineString, asMultiPoint, asPolygon

4、Point

(1)、創(chuàng)建point,主要有以下三種方法

# 創(chuàng)建point
pt1 = geo.Point([0,0])
coord = np.array([0,1])
pt2 = geo.Point(coord)
pt3 = wkt.loads("POINT(1 1)")
geo.GeometryCollection([pt1, pt2, pt3]) #批量可視化

最終三個(gè)點(diǎn)的結(jié)果如下所示:

(2)、point常用屬性

# point常用屬性
print(pt1.x) #pt1的x坐標(biāo)
print(pt1.y)#pt1的y坐標(biāo)
print(list(pt1.coords)) 
print(np.array(pt1))

輸出結(jié)果如下:

0.0
0.0
[(0.0, 0.0)]
[0. 0.]

(3)、point常用方法,計(jì)算距離

# point計(jì)算距離
d = pt2.distance(pt1) #計(jì)算pt1與pt2的距離, d =1.0

5、LineString

創(chuàng)建LineString主要有以下三種方法:

# LineString的創(chuàng)建
line1 = geo.LineString([(0,0),(1,-0.1),(2,0.1),(3,-0.1),(5,0.1),(7,0)])
arr = np.array([(2, 2), (3, 2), (4, 3)])
line2 = geo.LineString(arr)
line3 = wkt.loads("LineString(-2 -2,4 4)")

line1, line2, line3對(duì)應(yīng)的直線如下所示

LineString常用方法:

print(line2.length) #計(jì)算線段長(zhǎng)度:2.414213562373095
print(list(line2.coords)) #線段中點(diǎn)的坐標(biāo):[(2.0, 2.0), (3.0, 2.0), (4.0, 3.0)]
print(np.array(line2)) #將點(diǎn)坐標(biāo)轉(zhuǎn)成numpy.array形式[[2. 2.],[3. 2.],[4. 3.]]
print(line2.bounds)#坐標(biāo)范圍:(2.0, 2.0, 4.0, 3.0)
center = line2.centroid #幾何中心:
geo.GeometryCollection([line2, center])
bbox = line2.envelope #最小外接矩形
geo.GeometryCollection([line2, bbox])

rect = line2.minimum_rotated_rectangle #最小旋轉(zhuǎn)外接矩形
geo.GeometryCollection([line2, rect])

line2幾何中心:

line2的最小外接矩形:

line2的最小旋轉(zhuǎn)外接矩形:

#常用方法
d1 = line1.distance(line2) #線線距離: 1.9
d2 = line1.distance(geo.Point([-1, 0])) #點(diǎn)線距離:1.0
d3 = line1.hausdorff_distance(line2) #最大最小距離:4.242640687119285
#插值
pt_half = line1.interpolate(0.5, normalized = True)
geo.GeometryCollection([line1,pt_half])

#投影
ratio = line1.project(pt_half, normalized = True)
print(ratio)#project()方法是和interpolate方法互逆的:0.5

插值:

DouglasPucker算法:道格拉斯-普克算法:是將曲線近似表示為一系列點(diǎn),并減少點(diǎn)的數(shù)量的一種算法。

#DouglasPucker算法
line1 = geo.LineString([(0, 0), (1, -0.2), (2, 0.3), (3, -0.5), (5, 0.2), (7,0)])
line1_simplify = line1.simplify(0.4, preserve_topology=False)
print(line1)#LINESTRING (0 0, 1 -0.1, 2 0.1, 3 -0.1, 5 0.1, 7 0)
print(line1_simplify)#LINESTRING (0 0, 2 0.3, 3 -0.5, 5 0.2, 7 0)
buffer_with_circle = line1.buffer(0.2) #端點(diǎn)按照半圓擴(kuò)展
geo.GeometryCollection([line1,buffer_with_circle])

道格拉斯-普克算法化簡(jiǎn)后的結(jié)果

6、LineRing:(是一個(gè)封閉圖形)

#LinearRing是一個(gè)封閉圖形
ring = LinearRing([(0, 0), (1, 1), (1, 0)])
print(ring.length)#相比于剛才的LineString的代碼示例,其長(zhǎng)度現(xiàn)在是3.41,是因?yàn)槠湫蛄惺情]合的
print(ring.area):結(jié)果為0
geo.GeometryCollection([ring])

7、Polygon:(多邊形)

polygonl = Polygon([(0, 0), (1, 1), (1, 0)])
ext = [(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)]
int1 = [(1, 0), (0.5, 0.5), (1, 1), (1.5, 0.5), (1, 0)]
polygon2 = Polygon(ext, [int1])
print(polygonl.area)#幾何對(duì)象的面積:0.5
print(polygonl.length)#幾何對(duì)象的周長(zhǎng):3.414213562373095
print(polygon2.area)#其面積是ext的面積減去int的面積:3.5
print(polygon2.length)#其長(zhǎng)度是ext的長(zhǎng)度加上int的長(zhǎng)度:10.82842712474619
print(np.array(polygon2.exterior)) #外圍坐標(biāo)點(diǎn):
#[[0. 0.]
 #[0. 2.]
 #[2. 2.]
 #[2. 0.]
# [0. 0.]]
geo.GeometryCollection([polygon2])

8、幾何對(duì)象的關(guān)系:內(nèi)部、邊界與外部

#obj.contains(other) == other.within(obj)
coords = [(0, 0), (1, 1)]
print(geo.LineString(coords).contains(geo.Point(0.5, 0.5)))#包含:True

print(geo.LineString(coords).contains(geo.Point(1, 1)))#False
polygon1 = Polygon([(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)])
print(polygon1.contains(geo.LineString([(1.0, 1.0), (1.0, 0)])))#面與線關(guān)系:True
#contains方法也可以擴(kuò)展到面與線的關(guān)系以及面與面的關(guān)系
geo.GeometryCollection([polygon1, geo.LineString([(1.0, 1.0), (1.0, 0)])])

#obj.crosses(other):相交與否
print(geo.LineString(coords).crosses(geo.LineString([(0, 1), (1, 0)])))#:True
geo.GeometryCollection([geo.LineString(coords), geo.LineString([(0, 1), (1, 0)])])
#obj.disjoint(other):均不相交返回True
print(geo.Point(0, 0).disjoint(geo.Point(1, 1)))
#object.intersects(other)如果該幾何對(duì)象與另一個(gè)幾何對(duì)象只要相交則返回True。
print(geo.LineString(coords).intersects(geo.LineString([(0, 1), (1, 0)])))#True

#object.convex_hull返回包含對(duì)象中所有點(diǎn)的最小凸多邊形(凸包)
points1 = geo.MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
hull1 = points1.convex_hull
geo.GeometryCollection([hull1, points1])

#object.intersection  返回對(duì)象與對(duì)象之間的交集
polygon1 = Polygon([(0, 0), (0, 2), (2, 2), (2, 0), (0, 0)])
hull1.intersection(polygon1)

#返回對(duì)象與對(duì)象之間的并集
hull1.union(polygon1)

#面面補(bǔ)集
hull1.difference(polygon1)

9、point、LineRing、LineString與numpy中的array互相轉(zhuǎn)換

pa = asPoint(np.array([0, 0])) #將numpy轉(zhuǎn)成point格式

 #將numpy數(shù)組轉(zhuǎn)成LineString格式
la = asLineString(np.array(([[1.0, 2.0], [3.0, 4.0]])))

#將numpy數(shù)組轉(zhuǎn)成multipoint集合
ma = asMultiPoint(np.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]))

#將numpy轉(zhuǎn)成多邊形
pg = asPolygon(np.array([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6]]))

二、geopandas模塊

geopandas拓展了pandas,共有兩種數(shù)據(jù)類型:GeoSeries、GeoDataFrame

下述是利用geopandas庫(kù)繪制世界地圖:

import pandas as pd
import geopandas 
import matplotlib.pyplot as plt
world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres')) #read_file方法可以讀取shape文件
world.plot()
plt.show()

world.head()

#根據(jù)每一個(gè)polygon的pop_est不同,便可以用python繪制圖表顯示不同國(guó)家的人數(shù)
fig, ax = plt.subplots(figsize = (9, 6), dpi = 100)
world.plot('pop_est', ax = ax, legend =True)
plt.show()

python對(duì)海洋數(shù)據(jù)進(jìn)行預(yù)處理操作(這里我發(fā)現(xiàn),tqdm模塊可以顯示進(jìn)度條,感覺(jué)很高端,像下面這樣)

1、導(dǎo)入模塊

```python
import pandas as pd
import geopandas as gpd
from pyproj import Proj #左邊轉(zhuǎn)換
from keplergl import KeplerGl
from tqdm import tqdm
import os
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import shapely
import numpy as np
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimSun'] #指定默認(rèn)字體為新宋體
plt.rcParams['axes.unicode_minus'] = False

DataFrame獲取數(shù)據(jù),坐標(biāo)轉(zhuǎn)換,計(jì)算距離

#獲取文件夾中的數(shù)據(jù)
def get_data(file_path, model):
    assert model in ['train', 'test'], '{} Not Support this type of file'.format(model)
    paths = os.listdir(file_path)
    tmp = []
    for t in tqdm(range(len(paths))):
        p = paths[t]
        with open('{}/{}'.format(file_path, p), encoding = 'utf-8') as f:
            next(f) #讀取下一行
            for line in f.readlines():
                tmp.append(line.strip().split(','))
    tmp_df = pd.DataFrame(tmp)
    if model == 'train':
        tmp_df.columns = ['ID', 'lat', 'lon', 'speed', 'direction', 'time', 'type']
    else:
        tmp_df['type'] = 'unknown'
        tmp_df.columns = ['ID', 'lat', 'lon', 'speed', 'direction', 'time', 'type']
    tmp_df['lat'] = tmp_df['lat'].astype(float)
    tmp_df['lon'] = tmp_df['lon'].astype(float)
    tmp_df['speed'] = tmp_df['speed'].astype(float)
    tmp_df['direction'] = tmp_df['direction'].astype(int)
    return tmp_df
file_path = r"C:\Users\李\Desktop\datawheal\數(shù)據(jù)\hy_round1_train_20200102"
model = 'train'
#平面坐標(biāo)轉(zhuǎn)經(jīng)緯度
def transform_xy2lonlat(df):
    x = df['lat'].values
    y = df['lon'].values
    p = Proj('+proj=lcc +lat_1=33.88333333333333 +lat_2=32.78333333333333 +lat_0=32.16666666666666 +lon_0=-116.25 +x_0=2000000.0001016 +y_0=500000.0001016001 +datum=NAD83 +units=us-ft +no_defs ')
    df['lon'], df['lat'] = p(y, x, inverse = True)
    return df
#修改數(shù)據(jù)的時(shí)間格式
def reformat_strtime(time_str = None, START_YEAR = '2019'):
     time_str_split = time_str.split(" ") #以空格為分隔符
     time_str_reformat = START_YEAR + '-' + time_str_split[0][:2] + "-" + time_str_split[0][2:4]
     time_str_reformat = time_str_reformat + " " + time_str_split[1]
     return time_str_reformat
 
#計(jì)算兩個(gè)點(diǎn)的距離
def haversine_np(lon1, lat1, lon2, lat2):
    lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
    c = 2 * np.arcsin(np.sqrt(a))
    km = 6367 * c
    return km * 1000

利用3-sigma算法對(duì)異常值進(jìn)行處理,速度與時(shí)間

#計(jì)算時(shí)間的差值
def compute_traj_diff_time_distance(traj = None):
    #計(jì)算時(shí)間的差值
    time_diff_array = (traj['time'].iloc[1:].reset_index(drop = True) - traj['time'].iloc[:-1].reset_index(drop = True)).dt.total_seconds() / 60
    #計(jì)算坐標(biāo)之間的距離
    dist_diff_array = haversine_np(traj['lon'].values[1:],
                                   traj['lat'].values[1:],
                                   traj['lon'].values[:-1],
                                   traj['lat'].values[:-1])
    #填充第一個(gè)值
    time_diff_array = [time_diff_array.mean()] + time_diff_array.tolist()
    dist_diff_array = [dist_diff_array.mean()] + dist_diff_array.tolist()
    traj.loc[list(traj.index), 'time_array'] = time_diff_array
    traj.loc[list(traj.index), 'dist_array'] = dist_diff_array
    return traj
#對(duì)軌跡進(jìn)行異常點(diǎn)的剔除
def assign_traj_anomaly_points_nan(traj = None, speed_maximum = 23,time_interval_maximum = 200, coord_speed_maximum = 700):
    #將traj中的異常點(diǎn)分配給np.nan
    def thigma_data(data_y, n):
        data_x = [i for i in range(len(data_y))]
        ymean = np.mean(data_y)
        ystd = np.std(data_y)
        threshold1 = ymean - n * ystd
        threshold2 = ymean + n * ystd
        judge = []
        for data in data_y:
            if data  threshold1 or data > threshold2:
                judge.append(True)
            else:
                judge.append(False)
        return judge
    #異常速度修改
    is_speed_anomaly = (traj['speed'] > speed_maximum) | (traj['speed']  0)
    traj['speed'][is_speed_anomaly] = np.nan
    #根據(jù)距離和時(shí)間計(jì)算速度
    is_anomaly = np.array([False] * len(traj))
    traj['coord_speed'] = traj['dist_array'] / traj['time_array']
    #根據(jù)3-sigma算法對(duì)速度剔除以及較大的時(shí)間間隔點(diǎn)
    is_anomaly_tmp = pd.Series(thigma_data(traj['time_array'], 3)) | pd.Series(thigma_data(traj['coord_speed'], 3))
    is_anomaly = is_anomaly | is_anomaly_tmp
    is_anomaly.index = traj.index
    #軌跡點(diǎn)的3-sigma異常處理
    traj = traj[~is_anomaly].reset_index(drop = True)
    is_anomaly = np.array([False]*len(traj))
    if len(traj) != 0:
        lon_std, lon_mean = traj['lon'].std(), traj['lon'].mean()
        lat_std, lat_mean = traj['lat'].std(), traj['lat'].mean()
        lon_low, lon_high = lon_mean - 3* lon_std, lon_mean + 3 * lon_std
        lat_low, lat_high = lat_mean - 3 * lat_std, lat_mean + 3 * lat_std
        is_anomaly = is_anomaly | (traj['lon'] > lon_high) | ((traj['lon']  lon_low))
        is_anomaly = is_anomaly | (traj["lat"] > lat_high) | ((traj["lat"]  lat_low))
        traj = traj[~is_anomaly].reset_index(drop = True)
    return traj, [len(is_speed_anomaly) - len(traj)]

file_path = r"C:\Users\李\Desktop\datawheal\數(shù)據(jù)\hy_round1_train_20200102"
model = 'train'
df = get_data(file_path, model)
#轉(zhuǎn)換時(shí)間格式
df = transform_xy2lonlat(df)
df['time'] = df['time'].apply(reformat_strtime)
df['time'] = df['time'].apply(lambda x: datetime.strptime(x,'%Y-%m-%d %H:%M:%S'))
#對(duì)軌跡的異常點(diǎn)進(jìn)行剔除,對(duì)缺失值進(jìn)行線性插值處理
ID_list = list(pd.DataFrame(df['ID'].value_counts()).index)
DF_NEW = []
Anomaly_count = []
for ID in tqdm(ID_list):
    # print(ID)
    df_id = compute_traj_diff_time_distance(df[df['ID'] == ID])
    df_new, count = assign_traj_anomaly_points_nan(df_id)
    df_new['speed'] = df_new['speed'].interpolate(method = 'linear', axis = 0)
    df_new = df_new.fillna(method = 'bfill') #用前一個(gè)非缺失值取填充該缺失值
    df_new = df_new.fillna(method = 'ffill')#用后一個(gè)非缺失值取填充該缺失值
    df_new['speed'] = df_new['speed'].clip(0, 23) #clip()函數(shù)將其限定在0,23
    Anomaly_count.append(count) #統(tǒng)計(jì)每個(gè)id異常點(diǎn)的數(shù)量有多少
    DF_NEW.append(df_new)
DF = pd.concat(DF_NEW)

處理后的DF

利用Geopandas中的Simplify進(jìn)行軌跡簡(jiǎn)化和壓縮

#道格拉斯-普克,由該案例可以看出針對(duì)相同的ID軌跡,可以先用geopandas將其進(jìn)行簡(jiǎn)化和數(shù)據(jù)壓縮
line = shapely.geometry.LineString(np.array(df[df['ID'] == '11'][['lon', 'lat']]))
ax = gpd.GeoSeries([line]).plot(color = 'red')
ax = gpd.GeoSeries([line]).simplify(tolerance = 0.000000001).plot(color = 'blue', ax = ax, linestyle = '--')
LegendElement = [Line2D([], [], color = 'red', label = '簡(jiǎn)化前'),
                 Line2D([], [], color = 'blue', linestyle = '--', label = '簡(jiǎn)化后')]
#將制作好的圖例影響對(duì)象列表導(dǎo)入legend()中
ax.legend(handles = LegendElement, loc = 'upper left', fontsize = 10)
print('化簡(jiǎn)前數(shù)據(jù)長(zhǎng)度:' + str(len(np.array(gpd.GeoSeries([line])[0]))))
print('化簡(jiǎn)后數(shù)據(jù)長(zhǎng)度' + str(len(np.array(gpd.GeoSeries([line]).simplify(tolerance = 0.000000001)[0]))))
#定義數(shù)據(jù)簡(jiǎn)化函數(shù),通過(guò)shapely庫(kù)將經(jīng)緯度轉(zhuǎn)換成LineString格式,然后通過(guò)GeoSeries數(shù)據(jù)結(jié)構(gòu)中利用simplify進(jìn)行簡(jiǎn)化,再將所有數(shù)據(jù)放入GeoDataFrame
def simplify_dataframe(df):
    line_list = []
    for i in tqdm(dict(list(df.groupby('ID')))):
        line_dict = {}
        lat_lon = dict(list(df.groupby('ID')))[i][['lon', 'lat']]
        line = shapely.geometry.LineString(np.array(lat_lon))
        line_dict['ID'] = dict(list(df.groupby('ID')))[i].iloc[0]['ID']
        line_dict['type'] = dict(list(df.groupby('ID')))[i].iloc[0]['type']
        line_dict['geometry'] = gpd.GeoSeries([line]).simplify(tolerance = 0.000000001)[0]
        line_list.append(line_dict)
    return gpd.GeoDataframe(line_list)

化簡(jiǎn)前數(shù)據(jù)長(zhǎng)度:377
化簡(jiǎn)后數(shù)據(jù)長(zhǎng)度156

這塊的df_gpd_change沒(méi)有讀出來(lái),后續(xù)再發(fā)

df_gpd_change=pd.read_pickle(r"C:\Users\李\Desktop\datawheal\數(shù)據(jù)\df_gpd_change.pkl")        
map1=KeplerGl(height=800)#zoom_start與這個(gè)height類似,表示地圖的縮放程度
map1.add_data(data=df_gpd_change,name='data')
#當(dāng)運(yùn)行該代碼后,下面會(huì)有一個(gè)kepler.gl使用說(shuō)明的鏈接,可以根據(jù)該鏈接進(jìn)行學(xué)習(xí)參

GeoHash編碼:利用二分法不斷縮小經(jīng)緯度區(qū)間,經(jīng)度區(qū)間二分為[-180, 0]和[0,180],緯度區(qū)間二分為[-90,0]和[0,90],偶數(shù)位放經(jīng)度,奇數(shù)位放緯度交叉,將二進(jìn)制數(shù)每五位轉(zhuǎn)化為十進(jìn)制,在對(duì)應(yīng)編碼表進(jìn)行32位編碼

 

2、geohash_encode編碼函數(shù)

def geohash_encode(latitude, longitude, precision = 12):
    lat_interval, lon_interval = (-90.0, 90.0), (-180, 180)
    base32 = '0123456789bcdefghjkmnpqrstuvwxyz'
    geohash = []
    bits = [16, 8, 4, 2, 1]
    bit = 0
    ch = 0
    even = True
    while len(geohash)  precision:
        if even:
            mid = (lon_interval[0] + lon_interval[1]) / 2
            if longitude > mid:
                ch |= bits[bit]
                lon_interval = (mid, lon_interval[1])
            else:
                lon_interval = (lon_interval[0], mid)
        else:
            mid = (lat_interval[0] + lat_interval[1]) / 2
            if latitude > mid:
                ch |= bits[bit]
                lat_interval = (mid, lat_interval[1])
            else:
                lat_interval = (lat_interval[0], mid)
        even = not even
        if bit  4:
            bit += 1
        else:
            geohash += base32[ch]
            bit = 0
            ch = 0
    return ''.join(geohash)

到此這篇關(guān)于python爬蟲(chóng)之地理數(shù)據(jù)分析的文章就介紹到這了,更多相關(guān)python地理數(shù)據(jù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Python爬取股票信息,并可視化數(shù)據(jù)的示例
  • Python爬取數(shù)據(jù)并實(shí)現(xiàn)可視化代碼解析
  • python如何爬取網(wǎng)站數(shù)據(jù)并進(jìn)行數(shù)據(jù)可視化
  • 高考要來(lái)啦!用Python爬取歷年高考數(shù)據(jù)并分析
  • 單身狗福利?Python爬取某婚戀網(wǎng)征婚數(shù)據(jù)
  • Python爬蟲(chóng)之自動(dòng)爬取某車(chē)之家各車(chē)銷售數(shù)據(jù)
  • Python爬蟲(chóng)之爬取某文庫(kù)文檔數(shù)據(jù)
  • Python爬蟲(chóng)之爬取2020女團(tuán)選秀數(shù)據(jù)
  • Python爬蟲(chóng)實(shí)戰(zhàn)之爬取京東商品數(shù)據(jù)并實(shí)實(shí)現(xiàn)數(shù)據(jù)可視化

標(biāo)簽:日照 金華 貴州 雙鴨山 臨汾 陽(yáng)泉 克拉瑪依 赤峰

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python爬蟲(chóng)之教你如何爬取地理數(shù)據(jù)》,本文關(guān)鍵詞  python,爬蟲(chóng),之教,你,如何,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《python爬蟲(chóng)之教你如何爬取地理數(shù)據(jù)》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于python爬蟲(chóng)之教你如何爬取地理數(shù)據(jù)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    柏乡县| 岳池县| 渝中区| 阿拉善右旗| 奉节县| 和顺县| 阿克| 南岸区| 乐清市| 汉沽区| 盐源县| 共和县| 南康市| 霍城县| 商城县| 原平市| 昆山市| 兴安县| 江孜县| 古浪县| 沈阳市| 宜昌市| 海宁市| 徐汇区| 永康市| 启东市| 肥乡县| 隆尧县| 曲松县| 万源市| 泗洪县| 阜康市| 靖安县| 藁城市| 连城县| 新竹县| 河南省| 绥江县| 岐山县| 永济市| 农安县|