濮阳杆衣贸易有限公司

主頁 > 知識庫 > tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型

tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型

熱門標簽:萊蕪電信外呼系統(tǒng) 怎么辦理400客服電話 銀川電話機器人電話 企業(yè)微信地圖標注 鶴壁手機自動外呼系統(tǒng)違法嗎 高德地圖標注收入咋樣 B52系統(tǒng)電梯外呼顯示E7 地圖標注多個 沈陽防封電銷電話卡

TF 目前發(fā)布2.5 版本,之前閱讀1.X官方文檔,最近查看2.X的文檔。

tensorflow是非常強的工具,生態(tài)龐大

tensorflow提供了Keras的分支

這里不再提供Keras相關(guān)順序模型教程。

關(guān)于環(huán)境:ubuntu的 GPU,需要cuda和nvcc

不會安裝:查看

完整的Ubuntu18.04深度學習GPU環(huán)境配置,英偉達顯卡驅(qū)動安裝、cuda9.0安裝、cudnn的安裝、anaconda安裝

不安裝,直接翻墻用colab

測試GPU

>>> from tensorflow.python.client import device_lib
>>> device_lib.list_local_devices()

這是意思是掛了一個顯卡

具體查看官方文檔:https://www.tensorflow.org/install

服務(wù)器跑Jupyter

Define tensor constants.

import tensorflow as tf
# Create a Tensor.
hello = tf.constant("hello world")
hello
# Define tensor constants.
a = tf.constant(1)
b = tf.constant(6)
c = tf.constant(9)
# tensor變量的操作
# (+, *, ...)
add = tf.add(a, b)
sub = tf.subtract(a, b)
mul = tf.multiply(a, b)
div = tf.divide(a, b)
# 通過numpy返回數(shù)值  和torch一樣
print("add =", add.numpy())
print("sub =", sub.numpy())
print("mul =", mul.numpy())
print("div =", div.numpy())
add = 7
sub = -5
mul = 6
div = 0.16666666666666666
mean = tf.reduce_mean([a, b, c])
sum_ = tf.reduce_sum([a, b, c])
# Access tensors value.
print("mean =", mean.numpy())
print("sum =", sum_ .numpy())
mean = 5
sum = 16
# Matrix multiplications.
matrix1 = tf.constant([[1., 2.], [3., 4.]])
matrix2 = tf.constant([[5., 6.], [7., 8.]])
product = tf.matmul(matrix1, matrix2)
product
tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[19., 22.],
       [43., 50.]], dtype=float32)>
# Tensor to Numpy.
np_product = product.numpy()
print(type(np_product), np_product)
(numpy.ndarray,
 array([[19., 22.],
        [43., 50.]], dtype=float32))

Linear Regression

下面使用tensorflow快速構(gòu)建線性回歸模型,這里不使用kears的順序模型,而是采用torch的模型定義的寫法。

import numpy as np
import tensorflow as tf
# Parameters:
learning_rate = 0.01
training_steps = 1000
display_step = 50
# Training Data.
X = np.array([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
Y = np.array([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
random = np.random
# 權(quán)重和偏差,隨機初始化。
W = tf.Variable(random.randn(), name="weight")
b = tf.Variable(random.randn(), name="bias")
# Linear regression (Wx + b).
def linear_regression(x):
    return W * x + b
# Mean square error.
def mean_square(y_pred, y_true):
    return tf.reduce_mean(tf.square(y_pred - y_true))
# 隨機梯度下降優(yōu)化器。
optimizer = tf.optimizers.SGD(learning_rate)
# 優(yōu)化過程。
def run_optimization():
    # 將計算包在GradientTape中,以便自動區(qū)分。
    with tf.GradientTape() as g:
        pred = linear_regression(X)
        loss = mean_square(pred, Y)
    # 計算梯度。
    gradients = g.gradient(loss, [W, b])
        # 按照梯度更新W和b。
    optimizer.apply_gradients(zip(gradients, [W, b]))
#按給定的步數(shù)進行訓練。
for step in range(1, training_steps + 1):
    # 運行優(yōu)化以更新W和b值。
    run_optimization()
        if step % display_step == 0:
        pred = linear_regression(X)
        loss = mean_square(pred, Y)
        print("Step: %i, loss: %f, W: %f, b: %f" % (step, loss, W.numpy(), b.numpy()))


import matplotlib.pyplot as plt
plt.plot(X, Y, 'ro', label='Original data')
plt.plot(X, np.array(W * X + b), label='Fitted line')
plt.legend()
plt.show()

分類模型

本例使用MNIST手寫數(shù)字

數(shù)據(jù)集包含60000個訓練示例和10000個測試示例。

這些數(shù)字已經(jīng)過大小標準化,并在一個固定大小的圖像(28x28像素)中居中,值從0到255。

在本例中,每個圖像將轉(zhuǎn)換為float32,標準化為[0,1],并展平為784個特征(28×28)的一維數(shù)組。

import numpy as np
import tensorflow as tf
#  MNIST data
num_classes = 10      # 0->9 digits
num_features = 784    # 28 * 28
# Parameters 
lr = 0.01
batch_size = 256
display_step = 100
training_steps = 1000
# Prepare MNIST data
from tensorflow.keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Convert to Float32
x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)
# Flatten images into 1-D vector of 784 dimensions (28 * 28)
x_train, x_test = x_train.reshape([-1, num_features]), x_test.reshape([-1, num_features])
# [0, 255] to [0, 1]
x_train, x_test = x_train / 255, x_test / 255
# 打亂順序: tf.data API to shuffle and batch data
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.repeat().shuffle(5000).batch(batch_size=batch_size).prefetch(1)
# Weight of shape [784, 10] ~= [number_features, number_classes]
W = tf.Variable(tf.ones([num_features, num_classes]), name='weight')
# Bias of shape [10] ~= [number_classes]
b = tf.Variable(tf.zeros([num_classes]), name='bias')
# Logistic regression: W*x + b
def logistic_regression(x):
    # 應(yīng)用softmax函數(shù)將logit標準化為概率分布
    out = tf.nn.softmax(tf.matmul(x, W) + b)
       return out
# 交叉熵損失函數(shù)
def cross_entropy(y_pred, y_true):
    # 將標簽編碼為一個one_hot向量
    y_true = tf.one_hot(y_true, depth=num_classes)
        # 剪裁預(yù)測值避免錯誤
    y_pred = tf.clip_by_value(y_pred, 1e-9, 1)
        # 計算交叉熵
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred), 1))    
    return cross_entropy
# Accuracy
def accuracy(y_pred, y_true):
    correct = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))
    return tf.reduce_mean(tf.cast(correct, tf.float32))
# 隨機梯度下降優(yōu)化器
optimizer = tf.optimizers.SGD(lr)
# Optimization
def run_optimization(x, y):
    with tf.GradientTape() as g:
        pred = logistic_regression(x)
        loss = cross_entropy(y_pred=pred, y_true=y)
    gradients = g.gradient(loss, [W, b])   
    optimizer.apply_gradients(zip(gradients, [W, b]))
# Training
for step, (batch_x, batch_y) in enumerate(train_dataset.take(training_steps), 1):
    # Run the optimization to update W and b
    run_optimization(x=batch_x, y=batch_y)
       if step % display_step == 0:
        pred = logistic_regression(batch_x)
        loss = cross_entropy(y_pred=pred, y_true=batch_y)
        acc = accuracy(y_pred=pred, y_true=batch_y)
        print("Step: %i, loss: %f, accuracy: %f" % (step, loss, acc))

pred = logistic_regression(x_test)
print(f"Test Accuracy: {accuracy(pred, y_test)}")

Test Accuracy: 0.892300009727478

import matplotlib.pyplot as plt
n_images = 5
test_images = x_test[:n_images]
predictions = logistic_regression(test_images)
# 預(yù)測前5張
for i in range(n_images):
    plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray')
    plt.show()
    print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))

Model prediction: 7

Model prediction: 2

Model prediction: 1

Model prediction: 0

Model prediction: 4

以上就是tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型的詳細內(nèi)容,更多關(guān)于tensorflow快速構(gòu)建線性回歸和分類模型的資料請關(guān)注腳本之家其它相關(guān)文章!

您可能感興趣的文章:
  • tensorflow入門之訓練簡單的神經(jīng)網(wǎng)絡(luò)方法
  • TensorFlow使用Graph的基本操作的實現(xiàn)
  • 詳解tensorflow實現(xiàn)遷移學習實例
  • Python深度學習TensorFlow神經(jīng)網(wǎng)絡(luò)基礎(chǔ)概括

標簽:銀川 三亞 烏魯木齊 呼倫貝爾 葫蘆島 安慶 呼倫貝爾 湘西

巨人網(wǎng)絡(luò)通訊聲明:本文標題《tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型》,本文關(guān)鍵詞  tensorflow,基本操作,小白,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型》相關(guān)的同類信息!
  • 本頁收集關(guān)于tensorflow基本操作小白快速構(gòu)建線性回歸和分類模型的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    湟中县| 库车县| 油尖旺区| 茌平县| 县级市| 民丰县| 子长县| 磴口县| 新巴尔虎左旗| 彭山县| 温州市| 吴桥县| 海南省| 青神县| 洞头县| 珲春市| 孟津县| 灵武市| 沧源| 安溪县| 乃东县| 天峻县| 桑日县| 黄陵县| 镇巴县| 阿合奇县| 龙州县| 始兴县| 新沂市| 新乡县| 兴义市| 九龙城区| 临夏市| 祥云县| 天台县| 宜兴市| 太白县| 湖州市| 工布江达县| 大竹县| 社会|