濮阳杆衣贸易有限公司

主頁 > 知識庫 > CNN的Pytorch實現(LeNet)

CNN的Pytorch實現(LeNet)

熱門標簽:鶴壁手機自動外呼系統(tǒng)違法嗎 地圖標注多個 萊蕪電信外呼系統(tǒng) 怎么辦理400客服電話 B52系統(tǒng)電梯外呼顯示E7 企業(yè)微信地圖標注 高德地圖標注收入咋樣 沈陽防封電銷電話卡 銀川電話機器人電話

CNN的Pytorch實現(LeNet)

  上次寫了一篇CNN的詳解,可是累壞了老僧我。寫完后拿給朋友看,朋友說你這Pytorch的實現方式對于新人來講會很不友好,然后反問我說里面所有的細節(jié)你都明白了嗎。我想想,的確如此。那個源碼是我當時《動手學pytorch》的時候整理的,里面有很多包裝過的函數,對于新入門的人來講,的確是個大問題。于是,痛定思痛的我決定重新寫Pytorch實現這一部分,理論部分我就不多講了,咱們直接分析代碼,此代碼是來自Pytorch官方給出的LeNet Model。你可以使用Jupyter Notebook一行一行的學習,也可以使用Pycharm進行斷點訓練和Debug來學習。

沒有看過理論部分的同學可以看我上篇文章:一文帶你了解CNN(卷積神經網絡)。

  在整個講解的過程中,其中的一些比較重要的代碼我會引入一些例子來進行解釋它的功能,如果你想先直接跑通代碼,可以直接跳到代碼匯總部分,Here we go~

1. 任務目標

  這是一個對于彩色圖的10分類的問題,具體種類有:'plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck',訓練一個能夠對其進行分類的分類器。

2. 庫的導入

這一部分咱們就不說太多了吧,直接上code:

import torch # 張量的有關運算,如創(chuàng)建、索引、連接、轉置....和numpy的操作很像
import torch.nn as nn # 八廓搭建神經網絡層的模塊、loss等等
import torch.nn.functional as F # 常用的激活函數都在這里面
import torchvision # 專門處理圖像的庫
import torch.optim as optim # 各種參數優(yōu)化方法,SGD、Adam...
import torchvision.transforms as transforms # 提供了一般的圖像轉換操作的類,也可以用于圖像增強
import matplotlib.pyplot as plt 
import numpy as np 

3. 模型定義

  我們在定義自己網絡的時候,需要繼承nn.Module類,并重新實現構造函數__init__和forward兩個方法。forward方法是必須要重寫的,它是實現模型的功能,實現各個層之間的連接關系的核心。如果你是用我下面的這個方法來定義的模型,在forward中要去連接它們之間的關系;如果你是用Sequential的方法來定義的模型,一般來講可以直接在構造函數定義好后,在foward函數中return就行了(如果模型比較復雜就另當別論)。

class LeNet(nn.Module):
    """
    	下面這個模型定義沒有用Sequential來定義,Sequential的定義方法能夠在init中就給出各個層
    	之間的關系,我這里是根據是否有可學習的參數。我將可學習參數的層(如全連接、卷積)放在構造函數
    	中(其實你想把不具有參數的層放在里面也可以),把不具有學習參數的層(如dropout,
    	ReLU等激活函數、BN層)放在forward。
 
    """
    def __init__(self):
        super(LeNet,self).__init__()   

        # 第一個卷積塊,這里輸入的是3通道,彩色圖。
        self.conv1 = nn.Conv2d(3,16,5)
        self.pool1 = nn.MaxPool2d(2,2)

        # 第二個卷積塊
        self.conv2 = nn.Conv2d(16,32,5)
        self.pool2 = nn.MaxPool2d(2,2)

        # 稠密塊,包含三個全連接層
        self.fc1 = nn.Linear(32*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3 = nn.Linear(84,10)
        pass

    def forward(self,x):
        # x是輸入數據,是一個tensor
        # 正向傳播
        x = F.relu(self.conv1(x))    # input(3, 32, 32) output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        # 數據通過view展成一維向量,第一個參數-1是batch,自動推理;32x5x5是展平后的個數
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)

        # 為什么沒有用softmax函數 --- 在網絡模型中已經計算交叉熵以及概率
        return x

我們還可以隨便看一下可訓練參數:

model = LeNet()
for name,parameters in model.named_parameters():
    if param.requires_grad:    
        print(name,':',parameters.size())

看一下實例化的模型:

import torch
input1 = torch.rand([32,3,32,32])
model = LeNet() # 模式實例化
print(model) # 看一下模型結構
output = model(input1)

這里就不再拓展了,我發(fā)4我發(fā)4,我會專門再寫一篇使用pytorch查看特征矩陣 和卷積核參數的文章。

4. 數據加載、處理

# 調用設備內的GPU并打印出來
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))

# 定義圖像數據的數據預處理方式
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 如果是第一次運行代碼,沒有下載數據集,則將download調制為True進行下載,并加載訓練集
# transform是選擇數據預處理的方式,我們已經提前定義
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                         download=False,transform=transform)

# 如果你是windows系統(tǒng),一定要記得把num_workers設置為0,不然會報錯。
# 這個是將數據集劃為為n個批次,每個批次的數據集有batchSize張圖片,shuffle是打亂數據集
train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                           shuffle=True, num_workers=0)

# 上面已經下載過的話,download設置為False
val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=False, transform=transform)

# 驗證集不用打亂,把batchsize設置為1,每次拿出1張來驗證
val_loader = torch.utils.data.DataLoader(val_set, batch_size=1
                                         shuffle=False, num_workers=0)

# 定義classes類別
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

val_data_iter = iter(val_loader) # 轉換成可迭代的迭代器
val_image, val_label = val_data_iter.next()

# 定義imshow函數顯示圖像
def imshow(img):
    img = img / 2 + 0.5  # unnormalize -> 反標準化處理
    npimg = img.numpy() # numpy和tensor的通道順序不同 tensor是通道度、寬度,numpy是高、寬、通
    
    # 使用transpose調整維度
    plt.imshow(np.transpose(npimg, (1, 2, 0))) #(1,2,0)-> 代表高度、寬度 通道
    plt.show()

imshow(torchvision.utils.make_grid(val_image))
# 顯示圖像結果:

在這個圖像加載部分,我做了些其它的嘗試,想要去發(fā)現train_set和train_loader之間的不同。這里你可以逐行取消我注釋的代碼,然后去觀察,去對比,你就知道有哪些不一樣了。

"""
	train_set:

    總結:經過多次嘗試,發(fā)現train_set是用一個Dataset包裝起來,用索引來提取第n個數據,提出的數據是一個元組。
    元組的第一個索引是Tensor的圖像數據,(channel,height,width),索引的第二個數據是標簽 int類型。
    可以選擇用enumerate迭代器,也可以直接進行索引,這里因為沒有batchsize的維度,所以可以直接調用自己寫的
    imshow函數來顯示圖片
"""

for i,data in enumerate(train_set):
    if i == 7:
#         imshow(data[0])
#         print(data[0])
#         print(train_set[i][0]) # 查看train-set第七張圖元組 的 索引0
        print(train_set[i][0].shape)
        print(train_set[i][1]) # 查看train-set第七張圖元組 的 索引1
#         imshow(train_set[i][0])
        print(type(train_set[i][1]))
#         print(train_set[i].shape)
        print(data[0])
        print(data[0].shape)
#         print(type(data[i]))
"""
	train_loader

    總結:和Dataset類型不一樣,DataLoader不能夠直接用索引獲取數據。需要用enumerate迭代器來獲取 或者 iter.
    經過enumerate索引后,得到的data類型是擁有兩個變量的列表類型。第一個變量是Tensor類型,用[batchSize,channel,height,width]表示
    批圖像數據,里面是有batchsize張圖的。第二個變量也是Tensor類型,是代表每張圖像的標簽,是個一維torch
    
"""

for i,data in enumerate(train_loader):
    if i == 7:
        print(type(data))
        print(len(data))
        print(type(data[0]))
        print(type(data[1]))
        print(data[0].shape)
        print(data[1].shape)
        print(type(data[1]))
#         print(data[0])
        print(data[1])      
#         print(type(data[2]))

5.模型訓練

# 用GPU訓練
import time
torch.cuda.synchronize()
start = time.time()

net = LeNet()
net.to(device) #使用GPU時把網絡分配到指定的device中
loss_function = nn.CrossEntropyLoss() 
optimizer = optim.Adam(net.parameters(),lr=0.001) # Adam優(yōu)化器

Loss = []
for epoch in range(5):
    # 這里就只訓練5個epoch,你可以試試多個
    running_loss = 0.0
    for step,data in enumerate(train_loader,start=0):
        inputs,labels = data # data是一個列表,[數據,標簽]
        
        # 清除歷史梯度,加快訓練
        optimizer.zero_grad()
        
        outputs = net(inputs.to(device)) # 將輸入的數據分配到指定的GPU中
        
        loss = loss_function(outputs,labels.to(device)) # 將labels分配到指定的device
        
        loss.backward() # loss進行反向傳播
        optimizer.step() # step進行參數更新
        
        # 打印數據
        running_loss += loss.item() # 每次計算完loss后加入到running_loss中
        if step % 500 == 499: # 每500個mini-batches 就打印一次
            with torch.no_grad(): 
                outputs = net(val_image.to(device))
                # outputs的shape = [32,10]
                # dim是max函數索引的維度,0是每列最大值,1是每行最大值
                predict_y = torch.max(outputs,dim=1)[1] # max函數返回的每個batchSize的最大值 + 索引。獲取索引[1]
                    
                # == 來比較每個batchSize中的訓練結果標簽和原標簽是否相同,如果預測正確就返回1,否則返回0,并累計正確的數量。
                # 得到的是tensor,用item轉成數字,CPU時使用

                accuracy = (predict_y == val_label.to(device)).sum().item()/val_label.size(0) 
                # val_label.size是驗證集中batchSize的大小
                print('[%d %5d] train_loss: %.3f test_accuracy:%.3f' % (epoch+1,step+1,
                                                                       running_loss/500,accuracy))
                Loss.append(running_loss)
                running_loss = 0.0
print('Finished Training')
            
torch.cuda.synchronize()
end = time.time()

print("訓練用時:",end-start,'s')

五個epoch在我的GPU上訓練了68s。

整個代碼

model.py

import torch.nn as nn
import torch.nn.functional as F


class LeNet(nn.Module):
    # 要繼承于nn.Moudule父類
    def __init__(self):
        # 初始化函數

        super(LeNet, self).__init__()
        # 使用super函數,解決多繼承可能遇到的一些問題;調用基類的構造函數


        self.conv1 = nn.Conv2d(3, 16, 5) # 調用卷積層 (in_channels,out_channels(也是卷積核個數。輸出的通道數),kernel_size(卷積核大?。?stride)
        self.pool1 = nn.MaxPool2d(2, 2)  # 最大池化層,進行下采樣
        self.conv2 = nn.Conv2d(16, 32, 5) # 輸出的通道數為32
        self.pool2 = nn.MaxPool2d(2, 2)

        self.fc1 = nn.Linear(32*5*5, 120) # 全連接層輸入是一維向量,這里是32x5x5,我們要展平,120是節(jié)點的個數
        # 32是通道數
        # Linear(input_features,output_features)

        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # x是輸入數據,是一個tensor
        # 正向傳播
        x = F.relu(self.conv1(x))    # input(3, 32, 32) output(16, 28, 28)
        x = self.pool1(x)            # output(16, 14, 14)
        x = F.relu(self.conv2(x))    # output(32, 10, 10)
        x = self.pool2(x)            # output(32, 5, 5)
        x = x.view(-1, 32*5*5)       # output(32*5*5)
        # 數據通過view展成一維向量,第一個參數-1是batch,自動推理;32x5x5是展平后的個數
        x = F.relu(self.fc1(x))      # output(120)
        x = F.relu(self.fc2(x))      # output(84)
        x = self.fc3(x)              # output(10)
        # 為什么沒有用softmax函數 --- 在網絡模型中已經計算交叉熵以及概率
        return x

import torch
input1 = torch.rand([32,3,32,32])
model = LeNet() # 模式實例化
print(model) # 看一下模型結構
output = model(input1)

train.py

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # 50000張訓練圖片
    # 第一次使用時要將download設置為True才會自動去下載數據集
    train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=False, transform=transform)

    train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                               shuffle=True, num_workers=0)
    # 把訓練集讀取,別分成一個一個批次的,shuffle可用于隨機打亂;batch_size是一次處理36張圖像
    # num_worker在windows下只能設置成0


    # 10000張驗證圖片
    # 第一次使用時要將download設置為True才會自動去下載數據集
    val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=False, transform=transform)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,
                                             shuffle=False, num_workers=0)
    # 驗證集 一次拿出5000張1出來驗證,不用打亂

    val_data_iter = iter(val_loader) # 轉換成可迭代的迭代器
    val_image, val_label = val_data_iter.next()
    # 轉換成迭代器后,用next方法可以得到測試的圖像和圖像的標簽值
    
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')



    # 這一部分用來看數據集
    # def imshow(img):
    #     img = img / 2 + 0.5  # unnormalize -> 反標準化處理
    #     npimg = img.numpy()
    #     plt.imshow(np.transpose(npimg, (1, 2, 0))) #(1,2,0)-> 代表高度、寬度 通道
    #     plt.show()
    #
    # # print labels
    # print(' '.join('%5s' % classes[val_label[j]] for j in range(4)))
    # imshow(torchvision.utils.make_grid(val_image))



    net = LeNet()
    net.to(device)  # 使用GPU時將網絡分配到指定的device中,不使用GPU注釋
    loss_function = nn.CrossEntropyLoss() # 已經包含了softmax函數
    optimizer = optim.Adam(net.parameters(), lr=0.001) #Adam優(yōu)化器

    for epoch in range(5):  # loop over the dataset multiple times

        running_loss = 0.0
        for step, data in enumerate(train_loader, start=0):
            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data

            # zero the parameter gradients
            optimizer.zero_grad()
            # 一般batch_size根據硬件設備來設置的,這個清楚歷史梯度,不讓梯度累計,可以讓配置低的用戶加快訓練

            # forward + backward + optimize 、、、、、CPU
            # outputs = net(inputs)
            # loss = loss_function(outputs, labels)

            # GPU使用時添加,不使用時注釋
            outputs = net(inputs.to(device))  # 將inputs分配到指定的device中
            loss = loss_function(outputs, labels.to(device))  # 將labels分配到指定的device中

            loss.backward() # loss進行反向傳播
            optimizer.step() # step進行參數更新

            # print statistics
            running_loss += loss.item() # m每次計算完后就加入到running_loss中
            if step % 500 == 499:    # print every 500 mini-batches
                with torch.no_grad(): # 在測試、預測過程中,這個函數可以優(yōu)化內存,防止爆內存
                    # outputs = net(val_image)  # [batch, 10]
                    outputs = net(val_image.to(device))  # 使用GPU時用這行將test_image分配到指定的device中
                    predict_y = torch.max(outputs, dim=1)[1] #dim=1,因為dim=0是batch;[1]是索引,最大值在哪個位置
                    # accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)
                    # eq用來比較,如果預測正確返回1,錯誤返回0 -> 得到的是tensor,要用item轉成數值 CPU時使用

                    accuracy = (predict_y==val_label.to(device)).sum().item() / val_label.size(0)

                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0

    print('Finished Training')

    save_path = './Lenet.pth'
    torch.save(net.state_dict(), save_path)


if __name__ == '__main__':
    main()

Tips:數據集在當前目錄下創(chuàng)建一個data文件夾,然后在train_set導入數據那里的download設置為True就可以下載了。如果你沒有GPU的話,你可以使用CPU訓練,只需要把代碼中標記的GPU部分注釋,注釋掉的CPU部分取消注釋就ok了。有條件還是GPU吧,CPU太慢了。

引用:

pytorch官方model

到此這篇關于CNN的Pytorch實現(LeNet)的文章就介紹到這了,更多相關CNN的Pytorch實現內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 由淺入深學習TensorFlow MNIST 數據集
  • TensorFlow 實戰(zhàn)之實現卷積神經網絡的實例講解
  • PyTorch上實現卷積神經網絡CNN的方法
  • Python深度學習pytorch卷積神經網絡LeNet

標簽:呼倫貝爾 葫蘆島 湘西 烏魯木齊 三亞 呼倫貝爾 安慶 銀川

巨人網絡通訊聲明:本文標題《CNN的Pytorch實現(LeNet)》,本文關鍵詞  CNN,的,Pytorch,實現,LeNet,CNN,;如發(fā)現本文內容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內容系統(tǒng)采集于網絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《CNN的Pytorch實現(LeNet)》相關的同類信息!
  • 本頁收集關于CNN的Pytorch實現(LeNet)的相關信息資訊供網民參考!
  • 推薦文章
    宁强县| 津市市| 栾川县| 大厂| 汉阴县| 永宁县| 夏津县| 辉县市| 龙江县| 怀化市| 特克斯县| 冷水江市| 阿拉善盟| 读书| 赣州市| 无极县| 茶陵县| 盐源县| 区。| 余姚市| 秭归县| 新干县| 谢通门县| 沙田区| 桦川县| 万盛区| 徐闻县| 商城县| 仁化县| 白玉县| 贵州省| 荥经县| 陈巴尔虎旗| 六安市| 金秀| 崇左市| 梨树县| 定兴县| 嵊泗县| 台中县| 荃湾区|