docker容器下搭建kong的集群很簡單,官網(wǎng)介紹的也很簡單,初學(xué)者也許往往不知道如何去處理,經(jīng)過本人的嘔心瀝血的琢磨,終于搭建出來了。
主要思想:不同的kong連接同一個數(shù)據(jù)庫(就這么一句話)
難點:如何在不同的主機上用kong連接同一數(shù)據(jù)庫
要求:
1、兩臺主機 172.16.100.101 172.16.100.102
步驟:
1、在101上安裝數(shù)據(jù)庫(這里就用cassandra)
docker run -d --name kong-database \
-p 9042:9042 \
cassandra:latest
2、遷移數(shù)據(jù)庫(可以理解初始化數(shù)據(jù)庫)
docker run --rm \
--link kong-database:kong-database \
-e "KONG_DATABASE=cassandra" \
-e "KONG_PG_HOST=kong-database" \
-e "KONG_CASSANDRA_CONTACT_POINTS=kong-database" \
kong:latest kong migrations up
3、安裝kong
docker run -d --name kong \
--link kong-database:kong-database \
-e "KONG_DATABASE=cassandra" \
-e "KONG_PG_HOST=kong-database" \
-e "KONG_CASSANDRA_CONTACT_POINTS=kong-database" \
-e "KONG_PROXY_ACCESS_LOG=/dev/stdout" \
-e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" \
-e "KONG_PROXY_ERROR_LOG=/dev/stderr" \
-e "KONG_ADMIN_ERROR_LOG=/dev/stderr" \
-p 8000:8000 \
-p 8443:8443 \
-p 8001:8001 \
-p 8444:8444 \
kong:latest
注意:以上三部都是在101上完成的,且官網(wǎng)上都有https://getkong.org/install/docker/?_ga=2.68209937.1607475054.1519611673-2089953626.1519354770,接下來的第四步則是在另一主機102上完成,同一主機上可以用link,不同主機的容器關(guān)聯(lián)就不能使用link了,如下配置即可
4、在102上安裝另一個kong,實現(xiàn)多節(jié)點kong集群
docker run -d --name kong\
-e "KONG_DATABASE=cassandra" \
-e "KONG_PG_HOST=kong-database" \
-e "KONG_CASSANDRA_CONTACT_POINTS=172.16.100.101" \
-e "KONG_PROXY_ACCESS_LOG=/dev/stdout" \
-e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" \
-e "KONG_PROXY_ERROR_LOG=/dev/stderr" \
-e "KONG_ADMIN_ERROR_LOG=/dev/stderr" \
-p 8000:8000 \
-p 8443:8443 \
-p 8001:8001 \
-p 8444:8444 \
kong:latest
5、這里使用的是cassandra數(shù)據(jù)庫,所以需要修改一個配置 db_update_propagation 這個參數(shù),默認是0,可以改成 5,進入容器
docker exec -it kong bash //進入kong容器
cd etc/kong //進入該目錄下
cp kong.conf.default kong.conf //復(fù)制kong.conf.default文件為kong.conf文件
vi kong.conf //修改db_update_propagation這個配置項
exit //退出空容器
docker restart kong //重新啟動kong
注:101和102上的kong都需要修改這個配置項,關(guān)于db_update_propagation配置項的介紹可以去官網(wǎng)看下
6、驗證kong集群
可以在101上注冊一個api如下
curl -i -X POST \
--url http://172.16.100.101:8001/apis/ \
--data 'name=example-api' \
--data 'hosts=example.com' \
--data 'upstream_url=http://mockbin.org'
然后查詢這個api是否注冊成功:
curl -i http://172.16.100.101:8001/apis/example-api
返回如下:
你也可以通過102機器主機進行查詢:
curl -i http://172.16.100.102:8001/apis/example-api
如果也返回和上面一樣的結(jié)果說明可以訪問同一個api了,api信息是保存在數(shù)據(jù)庫中的,也是就說可以訪問同一個數(shù)據(jù)庫了,這樣你的kong集群也就搭建成功了,希望對你有所幫助。
補充知識:使用docker-compose創(chuàng)建hadoop集群
下載docker鏡像
首先下載需要使用的五個docker鏡像
docker pull bde2020/hadoop-namenode:1.1.0-hadoop2.7.1-java8
docker pull bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8
docker pull bde2020/hadoop-resourcemanager:1.1.0-hadoop2.7.1-java8
docker pull bde2020/hadoop-historyserver:1.1.0-hadoop2.7.1-java8
docker pull bde2020/hadoop-nodemanager:1.1.0-hadoop2.7.1-java8
設(shè)置hadoop配置參數(shù)
創(chuàng)建 hadoop.env 文件,內(nèi)容如下:
CORE_CONF_fs_defaultFS=hdfs://namenode:8020
CORE_CONF_hadoop_http_staticuser_user=root
CORE_CONF_hadoop_proxyuser_hue_hosts=*
CORE_CONF_hadoop_proxyuser_hue_groups=*
HDFS_CONF_dfs_webhdfs_enabled=true
HDFS_CONF_dfs_permissions_enabled=false
YARN_CONF_yarn_log___aggregation___enable=true
YARN_CONF_yarn_resourcemanager_recovery_enabled=true
YARN_CONF_yarn_resourcemanager_store_class=org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore
YARN_CONF_yarn_resourcemanager_fs_state___store_uri=/rmstate
YARN_CONF_yarn_nodemanager_remote___app___log___dir=/app-logs
YARN_CONF_yarn_log_server_url=http://historyserver:8188/applicationhistory/logs/
YARN_CONF_yarn_timeline___service_enabled=true
YARN_CONF_yarn_timeline___service_generic___application___history_enabled=true
YARN_CONF_yarn_resourcemanager_system___metrics___publisher_enabled=true
YARN_CONF_yarn_resourcemanager_hostname=resourcemanager
YARN_CONF_yarn_timeline___service_hostname=historyserver
YARN_CONF_yarn_resourcemanager_address=resourcemanager:8032
YARN_CONF_yarn_resourcemanager_scheduler_address=resourcemanager:8030
YARN_CONF_yarn_resourcemanager_resource___tracker_address=resourcemanager:8031
創(chuàng)建docker-compose文件
創(chuàng)建 docker-compose.yml 文件,內(nèi)如如下:
version: "2"
services:
namenode:
image: bde2020/hadoop-namenode:1.1.0-hadoop2.7.1-java8
container_name: namenode
volumes:
- hadoop_namenode:/hadoop/dfs/name
environment:
- CLUSTER_NAME=test
env_file:
- ./hadoop.env
resourcemanager:
image: bde2020/hadoop-resourcemanager:1.1.0-hadoop2.7.1-java8
container_name: resourcemanager
depends_on:
- namenode
- datanode1
- datanode2
- datanode3
env_file:
- ./hadoop.env
historyserver:
image: bde2020/hadoop-historyserver:1.1.0-hadoop2.7.1-java8
container_name: historyserver
depends_on:
- namenode
- datanode1
- datanode2
- datanode3
volumes:
- hadoop_historyserver:/hadoop/yarn/timeline
env_file:
- ./hadoop.env
nodemanager1:
image: bde2020/hadoop-nodemanager:1.1.0-hadoop2.7.1-java8
container_name: nodemanager1
depends_on:
- namenode
- datanode1
- datanode2
- datanode3
env_file:
- ./hadoop.env
datanode1:
image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8
container_name: datanode1
depends_on:
- namenode
volumes:
- hadoop_datanode1:/hadoop/dfs/data
env_file:
- ./hadoop.env
datanode2:
image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8
container_name: datanode2
depends_on:
- namenode
volumes:
- hadoop_datanode2:/hadoop/dfs/data
env_file:
- ./hadoop.env
datanode3:
image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8
container_name: datanode3
depends_on:
- namenode
volumes:
- hadoop_datanode3:/hadoop/dfs/data
env_file:
- ./hadoop.env
volumes:
hadoop_namenode:
hadoop_datanode1:
hadoop_datanode2:
hadoop_datanode3:
hadoop_historyserver:
創(chuàng)建并啟動hadoop集群
sudo docker-compose up
啟動hadoop集群后,可以使用下面命令查看一下hadoop集群的容器信息
# 查看集群包含的容器,以及export的端口號
sudo docker-compose ps
Name Command State Ports
------------------------------------------------------------
datanode1 /entrypoint.sh /run.sh Up 50075/tcp
datanode2 /entrypoint.sh /run.sh Up 50075/tcp
datanode3 /entrypoint.sh /run.sh Up 50075/tcp
historyserver /entrypoint.sh /run.sh Up 8188/tcp
namenode /entrypoint.sh /run.sh Up 50070/tcp
nodemanager1 /entrypoint.sh /run.sh Up 8042/tcp
resourcemanager /entrypoint.sh /run.sh Up 8088/tc
# 查看namenode的IP地址
sudo docker inspect namenode | grep IPAddress
也可以通過 http://:50070 查看集群狀態(tài)。
提交作業(yè)
要提交作業(yè),我們首先需要登錄到集群中的一個節(jié)點,這里我們就登錄到namenode節(jié)點。
sudo docker exec -it namenode /bin/bash
準(zhǔn)備數(shù)據(jù)并提交作業(yè)
cd /opt/hadoop-2.7.1
# 創(chuàng)建用戶目錄
hdfs dfs -mkdir /user
hdfs dfs -mkdir /user/root
# 準(zhǔn)備數(shù)據(jù)
hdfs dfs -mkdir input
hdfs dfs -put etc/hadoop/*.xml input
# 提交作業(yè)
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar grep input output 'dfs[a-z.]+'
# 查看作業(yè)執(zhí)行結(jié)果
hdfs dfs -cat output/*
清空數(shù)據(jù)
hdfs dfs -rm input/*
hdfs dfs -rmdir input/
hdfs dfs -rm output/*
hdfs dfs -rmdir output/
停止集群
可以通過CTRL+C來終止集群,也可以通過 “sudo docker-compose stop”。
停止集群后,創(chuàng)建的容器并不會被刪除,此時可以使用 “sudo docker-compose rm” 來刪除已經(jīng)停止的容器。也可以使用 “sudo docker-compose down” 來停止并刪除容器。
刪除容器后,使用 “sudo docker volume ls” 可以看到上面集群使用的volume信息,我們可以使用 “sudo docker rm ” 來刪除。
以上這篇使用docker搭建kong集群操作就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。