濮阳杆衣贸易有限公司

主頁 > 知識庫 > Oracle CBO幾種基本的查詢轉換詳解

Oracle CBO幾種基本的查詢轉換詳解

熱門標簽:騰訊地圖標注要費用嗎 高德地圖標注公司名字大全 N個你智能電銷機器人 七日殺a19.5全地圖標注 電渠外呼系統(tǒng) 車瑪仕極限運動場所地圖標注 廣東營銷智能外呼系統(tǒng)商家 地圖標注怎么保存 外呼電話系統(tǒng)用卡嗎

在執(zhí)行計劃的開發(fā)過程中,轉換和選擇有這個不同的任務;實際上,在一個查詢進行完語法和權限檢查后,首先發(fā)生通稱為“查詢轉換”的步驟,這里會進行一系列查詢塊的轉換,然后才是“優(yōu)選”(優(yōu)化器為了決定最終的執(zhí)行計劃而為不同的計劃計算成本從而選擇最終的執(zhí)行計劃)。

我們知道查詢塊是以SELECT關鍵字區(qū)分的,查詢的書寫方式?jīng)Q定了查詢塊之間的關系,各個查詢塊通常都是嵌在另一個查詢塊中或者以某種方式與其相聯(lián)結;例如:

復制代碼 代碼如下:

select * from employees where department_id in (select department_id from departments)

就是嵌套的查詢塊,不過它們的目的都是去探索如果改變查詢寫法會不會提供更好的查詢計劃。

這種查詢轉換的步驟對于執(zhí)行用戶可以說是完全透明的,要知道轉換器可能會在不改變查詢結果集的情況下完全改寫你的SQL語句結構,因此我們有必要重新評估自己的查詢語句的心理預期,盡管這種轉換通常來說都是好事,為了獲得更好更高效的執(zhí)行計劃。

我們現(xiàn)在來討論一下幾種基本的轉換:

1.視圖合并
2.子查詢解嵌套
3.謂語前推
4.物化視圖查詢重寫

一、視圖合并

這種方式比較容易理解,它會將內(nèi)嵌的視圖展開成一個獨立處理的查詢塊,或者將其與查詢剩余部分合并成一個總的執(zhí)行計劃,轉換后的語句基本上不包含視圖了。

視圖合并通常發(fā)生在當外部查詢塊的謂語包括:

1,能夠在另一個查詢塊的索引中使用的列
2,能夠在另一個查詢塊的分區(qū)截斷中所使用的列
3,在一個聯(lián)結視圖能夠限制返回行數(shù)的條件

在這種查詢器的轉換下,視圖并不總會有自己的子查詢計劃,它會被預先分析并通常情況下與查詢的其他部分合并以獲得性能的提升,如下例。

復制代碼 代碼如下:

SQL> set autotrace traceonly explain
-- 進行視圖合并
SQL> select * from EMPLOYEES a,
  2  (select DEPARTMENT_ID from EMPLOYEES) b_view
  3  where a.DEPARTMENT_ID = b_view.DEPARTMENT_ID(+)
  4  and a.SALARY > 3000;

Execution Plan
----------------------------------------------------------
Plan hash value: 1634680537

----------------------------------------------------------------------------------------
| Id  | Operation          | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |                   |  3161 |   222K|     3   (0)| 00:00:01 |
|   1 |  NESTED LOOPS OUTER|                   |  3161 |   222K|     3   (0)| 00:00:01 |
|*  2 |   TABLE ACCESS FULL| EMPLOYEES         |   103 |  7107 |     3   (0)| 00:00:01 |
|*  3 |   INDEX RANGE SCAN | EMP_DEPARTMENT_IX |    31 |    93 |     0   (0)| 00:00:01 |
----------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - filter("A"."SALARY">3000)
   3 - access("A"."DEPARTMENT_ID"="DEPARTMENT_ID"(+))

-- 使用NO_MERGE防止視圖被重寫
SQL> select * from EMPLOYEES a,
  2  (select /*+ NO_MERGE */DEPARTMENT_ID from EMPLOYEES) b_view
  3  where a.DEPARTMENT_ID = b_view.DEPARTMENT_ID(+)
  4  and a.SALARY > 3000;

Execution Plan
----------------------------------------------------------
Plan hash value: 1526679670

-----------------------------------------------------------------------------------
| Id  | Operation             | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT      |           |  3161 |   253K|     7  (15)| 00:00:01 |
|*  1 |  HASH JOIN RIGHT OUTER|           |  3161 |   253K|     7  (15)| 00:00:01 |
|   2 |   VIEW                |           |   107 |  1391 |     3   (0)| 00:00:01 |
|   3 |    TABLE ACCESS FULL  | EMPLOYEES |   107 |   321 |     3   (0)| 00:00:01 |
|*  4 |   TABLE ACCESS FULL   | EMPLOYEES |   103 |  7107 |     3   (0)| 00:00:01 |
-----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("A"."DEPARTMENT_ID"="B_VIEW"."DEPARTMENT_ID"(+))
   4 - filter("A"."SALARY">3000)

出于某些情況,視圖合并會被禁止或限制,如果在一個查詢塊中使用了分析函數(shù),聚合函數(shù),,集合運算(如union,intersect,minux),order by子句,以及rownum中的任何一種,這種情況都會發(fā)生;盡管如此,我們?nèi)匀豢梢允褂?*+ MERGE(v) */提示來強制使用視圖合并,不過前提一定要保證返回的結果集是一致的?。?!如下例:

復制代碼 代碼如下:

SQL> set autotrace on
-- 使用聚合函數(shù)avg導致視圖合并失效
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
  2  FROM hr.employees e1,
  3  (SELECT department_id, avg(salary) avg_salary
  4  FROM hr.employees e2
  5  GROUP BY department_id) v
  6  WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;

Execution Plan
----------------------------------------------------------
Plan hash value: 2695105989

----------------------------------------------------------------------------------
| Id  | Operation            | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |           |    17 |   697 |     8  (25)| 00:00:01 |
|*  1 |  HASH JOIN           |           |    17 |   697 |     8  (25)| 00:00:01 |
|   2 |   VIEW               |           |    11 |   286 |     4  (25)| 00:00:01 |
|   3 |    HASH GROUP BY     |           |    11 |    77 |     4  (25)| 00:00:01 |
|   4 |     TABLE ACCESS FULL| EMPLOYEES |   107 |   749 |     3   (0)| 00:00:01 |
|   5 |   TABLE ACCESS FULL  | EMPLOYEES |   107 |  1605 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
       filter("E1"."SALARY">"V"."AVG_SALARY")

--使用/*+ MERGE(v) */強制進行視圖合并
SQL> SELECT /*+ MERGE(v) */ e1.last_name, e1.salary, v.avg_salary
  2  FROM hr.employees e1,
  3  (SELECT department_id, avg(salary) avg_salary
  4  FROM hr.employees e2
  5  GROUP BY department_id) v
  6  WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;

Execution Plan
----------------------------------------------------------
Plan hash value: 3553954154

----------------------------------------------------------------------------------
| Id  | Operation            | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |           |   165 |  5610 |     8  (25)| 00:00:01 |
|*  1 |  FILTER              |           |       |       |            |          |
|   2 |   HASH GROUP BY      |           |   165 |  5610 |     8  (25)| 00:00:01 |
|*  3 |    HASH JOIN         |           |  3296 |   109K|     7  (15)| 00:00:01 |
|   4 |     TABLE ACCESS FULL| EMPLOYEES |   107 |  2889 |     3   (0)| 00:00:01 |
|   5 |     TABLE ACCESS FULL| EMPLOYEES |   107 |   749 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------

二、子查詢解嵌套

最典型的就是子查詢轉變?yōu)楸磉B接了,它和視圖合并的主要區(qū)別就在于它的子查詢位于where子句,由轉換器進行解嵌套的檢測。

下面便是一個子查詢==>表連接的例子:

復制代碼 代碼如下:

SQL> select employee_id, last_name, salary, department_id
  2  from hr.employees
  3  where department_id in
  4  (select department_id
  5  from hr.departments where location_id > 1700);

Execution Plan
----------------------------------------------------------
Plan hash value: 432925905

---------------------------------------------------------------------------------------------------
| Id  | Operation                     | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |                   |    34 |   884 |     4   (0)| 00:00:01 |
|   1 |  NESTED LOOPS                 |                   |       |       |            |          |
|   2 |   NESTED LOOPS                |                   |    34 |   884 |     4   (0)| 00:00:01 |
|   3 |    TABLE ACCESS BY INDEX ROWID| DEPARTMENTS       |     4 |    28 |     2   (0)| 00:00:01 |
|*  4 |     INDEX RANGE SCAN          | DEPT_LOCATION_IX  |     4 |       |     1   (0)| 00:00:01 |
|*  5 |    INDEX RANGE SCAN           | EMP_DEPARTMENT_IX |    10 |       |     0   (0)| 00:00:01 |
|   6 |   TABLE ACCESS BY INDEX ROWID | EMPLOYEES         |    10 |   190 |     1   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   4 - access("LOCATION_ID">1700)
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")

-- 使用/*+ NO_UNNEST */強制為子查詢單獨生成執(zhí)行計劃
SQL> select employee_id, last_name, salary, department_id
  2  from hr.employees
  3  where department_id in
  4  (select /*+ NO_UNNEST */department_id
  5  from hr.departments where location_id > 1700);

Execution Plan
----------------------------------------------------------
Plan hash value: 4233807898

--------------------------------------------------------------------------------------------
| Id  | Operation                    | Name        | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |             |    10 |   190 |    14   (0)| 00:00:01 |
|*  1 |  FILTER                      |             |       |       |            |          |
|   2 |   TABLE ACCESS FULL          | EMPLOYEES   |   107 |  2033 |     3   (0)| 00:00:01 |
|*  3 |   TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |     1 |     7 |     1   (0)| 00:00:01 |
|*  4 |    INDEX UNIQUE SCAN         | DEPT_ID_PK  |     1 |       |     0   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - filter( EXISTS (SELECT /*+ NO_UNNEST */ 0 FROM "HR"."DEPARTMENTS"
              "DEPARTMENTS" WHERE "DEPARTMENT_ID"=:B1 AND "LOCATION_ID">1700))
   3 - filter("LOCATION_ID">1700)
   4 - access("DEPARTMENT_ID"=:B1)


可以看到?jīng)]有執(zhí)行子查詢解嵌套的查詢只使用了FILTER來進行兩張表的匹配,謂語信息第一步的查詢也沒有絲毫的改動,這便意味著對于EMPLOYEES表中返回的107行的每一行,都需要執(zhí)行一次子查詢。雖然在oracle中存在子查詢緩存的優(yōu)化,我們無法判斷這兩種計劃的優(yōu)劣,不過相比NESTED LOOPS,F(xiàn)ILTER運算的劣勢是很明顯的。

如果包含相關子查詢,解嵌套過程一般會將相關子查詢轉換成一個非嵌套視圖,然后與主查詢中的表x相聯(lián)結,如:

復制代碼 代碼如下:

SQL> select outer.employee_id, outer.last_name, outer.salary, outer.department_id
  2  from hr.employees outer
  3  where outer.salary >
  4  (select avg(inner.salary)
  5  from hr.employees inner
  6  where inner.department_id = outer.department_id);

Execution Plan
----------------------------------------------------------
Plan hash value: 2167610409

----------------------------------------------------------------------------------
| Id  | Operation            | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |           |    17 |   765 |     8  (25)| 00:00:01 |
|*  1 |  HASH JOIN           |           |    17 |   765 |     8  (25)| 00:00:01 |
|   2 |   VIEW               | VW_SQ_1   |    11 |   286 |     4  (25)| 00:00:01 |
|   3 |    HASH GROUP BY     |           |    11 |    77 |     4  (25)| 00:00:01 |
|   4 |     TABLE ACCESS FULL| EMPLOYEES |   107 |   749 |     3   (0)| 00:00:01 |
|   5 |   TABLE ACCESS FULL  | EMPLOYEES |   107 |  2033 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("ITEM_1"="OUTER"."DEPARTMENT_ID")
       filter("OUTER"."SALARY">"AVG(INNER.SALARY)")

上面的查詢是將子查詢轉換成視圖在與主查詢進行hash join,轉換后的查詢其實像這樣:

復制代碼 代碼如下:

SQL> select outer.employee_id, outer.last_name, outer.salary, outer.department_id
  2  from hr.employees outer,
  3  (select department_id,avg(salary) avg_sal from hr.employees group by department_id) inner
  4  where inner.department_id = outer.department_id and outer.salary > inner.avg_sal;

其實這兩個語句的執(zhí)行計劃也是一致

三、謂語前推

將謂詞從內(nèi)部查詢塊推進到一個不可合并的查詢塊中,這樣可以使得謂詞條件更早的被選擇,更早的過濾掉不需要的數(shù)據(jù)行,提高效率,同樣可以使用這種方式允許某些索引的使用。

復制代碼 代碼如下:

-- 謂語前推示例
SQL> set autotrace traceonly explain
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
  2  FROM hr.employees e1,
  3  (SELECT department_id, avg(salary) avg_salary
  4  FROM hr.employees e2
  5  GROUP BY department_id) v
  6  WHERE e1.department_id = v.department_id
  7  AND e1.salary > v.avg_salary
  8  AND e1.department_id = 60;

Execution Plan
----------------------------------------------------------
Plan hash value: 3521487559

-----------------------------------------------------------------------------------------------------
| Id  | Operation                       | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
-----------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                |                   |     1 |    41 |     3   (0)| 00:00:01 |
|   1 |  NESTED LOOPS                   |                   |       |       |            |          |
|   2 |   NESTED LOOPS                  |                   |     1 |    41 |     3   (0)| 00:00:01 |
|   3 |    VIEW                         |                   |     1 |    26 |     2   (0)| 00:00:01 |
|   4 |     HASH GROUP BY               |                   |     1 |     7 |     2   (0)| 00:00:01 |
|   5 |      TABLE ACCESS BY INDEX ROWID| EMPLOYEES         |     5 |    35 |     2   (0)| 00:00:01 |
|*  6 |       INDEX RANGE SCAN          | EMP_DEPARTMENT_IX |     5 |       |     1   (0)| 00:00:01 |
|*  7 |    INDEX RANGE SCAN             | EMP_DEPARTMENT_IX |     5 |       |     0   (0)| 00:00:01 |
|*  8 |   TABLE ACCESS BY INDEX ROWID   | EMPLOYEES         |     1 |    15 |     1   (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   6 - access("DEPARTMENT_ID"=60)
   7 - access("E1"."DEPARTMENT_ID"=60)
   8 - filter("E1"."SALARY">"V"."AVG_SALARY")

-- 不進行謂語前推
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
  2  FROM hr.employees e1,
  3  (SELECT department_id, avg(salary) avg_salary
  4  FROM hr.employees e2
  5  WHERE rownum > 1 -- rownum等于同時使用了no_merge和no_push_pred提示,這會同時禁用視圖合并和謂語前推
  6  GROUP BY department_id) v
  7  WHERE e1.department_id = v.department_id
  8  AND e1.salary > v.avg_salary
  9  AND e1.department_id = 60;

Execution Plan
----------------------------------------------------------
Plan hash value: 3834222907

--------------------------------------------------------------------------------------------------
| Id  | Operation                    | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                   |     3 |   123 |     7  (29)| 00:00:01 |
|*  1 |  HASH JOIN                   |                   |     3 |   123 |     7  (29)| 00:00:01 |
|   2 |   TABLE ACCESS BY INDEX ROWID| EMPLOYEES         |     5 |    75 |     2   (0)| 00:00:01 |
|*  3 |    INDEX RANGE SCAN          | EMP_DEPARTMENT_IX |     5 |       |     1   (0)| 00:00:01 |
|*  4 |   VIEW                       |                   |    11 |   286 |     4  (25)| 00:00:01 |
|   5 |    HASH GROUP BY             |                   |    11 |    77 |     4  (25)| 00:00:01 |
|   6 |     COUNT                    |                   |       |       |            |          |
|*  7 |      FILTER                  |                   |       |       |            |          |
|   8 |       TABLE ACCESS FULL      | EMPLOYEES         |   107 |   749 |     3   (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
       filter("E1"."SALARY">"V"."AVG_SALARY")
   3 - access("E1"."DEPARTMENT_ID"=60)
   4 - filter("V"."DEPARTMENT_ID"=60)
   7 - filter(ROWNUM>1)

比較上面的兩個查詢可以看到,在第一個查詢中,DEPARTMENT_ID=60謂詞被推進到視圖v中執(zhí)行了,這樣就使得內(nèi)部視圖查詢只需要獲得部門號為60的平均薪水就可以了;而在第二個查詢中則需要計算每個部門的平均薪水,然后在與外部查詢聯(lián)結的時候使用DEPARTMENT_ID=60條件過濾,相對而言這里為了等待應用謂詞條件,查詢做了更多的工作。

四、使用物化視圖進行查詢重寫

當為物化視圖開啟查詢重寫功能時,CBO優(yōu)化器會評估相應查詢對基表與物化視圖的訪問成本,如果優(yōu)化器認為該查詢結果從物化視圖中獲得會更高效,那么就會其自動選擇為物化視圖來執(zhí)行,否則則對基表生成查詢計劃。

還是來看栗子:

復制代碼 代碼如下:

SQL> set autotrace traceonly explain
SQL> select DEPARTMENT_ID,count(EMPLOYEE_ID) from EMPLOYEES group by DEPARTMENT_ID;

Execution Plan
----------------------------------------------------------
Plan hash value: 1192169904

--------------------------------------------------------------------------------
| Id  | Operation          | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |           |    11 |    33 |     4  (25)| 00:00:01 |
|   1 |  HASH GROUP BY     |           |    11 |    33 |     4  (25)| 00:00:01 |
|   2 |   TABLE ACCESS FULL| EMPLOYEES |   107 |   321 |     3   (0)| 00:00:01 |
--------------------------------------------------------------------------------

-- 創(chuàng)建物化視圖日志
SQL> create materialized view log on EMPLOYEES with sequence,
  2  rowid (EMPLOYEE_ID,DEPARTMENT_ID) including new values;

Materialized view log created.

-- 創(chuàng)建物化視圖,并指定查詢重寫功能
SQL> create materialized view mv_t
  2  build immediate refresh fast on commit
  3  enable query rewrite as
  4  select DEPARTMENT_ID,count(EMPLOYEE_ID) from EMPLOYEES group by DEPARTMENT_ID;

Materialized view created.

SQL> select DEPARTMENT_ID,count(EMPLOYEE_ID) from EMPLOYEES group by DEPARTMENT_ID;

Execution Plan
----------------------------------------------------------
Plan hash value: 1712400360

-------------------------------------------------------------------------------------
| Id  | Operation                    | Name | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |      |    12 |   312 |     3   (0)| 00:00:01 |
|   1 |  MAT_VIEW REWRITE ACCESS FULL| MV_T |    12 |   312 |     3   (0)| 00:00:01 |
-------------------------------------------------------------------------------------

Note
-----
   - dynamic sampling used for this statement (level=2)

可以看到在第二個查詢中,雖然是指定的查詢EMPLOYEES表,但是優(yōu)化器自動選擇了物化視圖的執(zhí)行路徑,因為它判斷出物化視圖已經(jīng)記載當前查詢需要的結果集數(shù)據(jù)了,直接訪問物化視圖會獲得更高的效率。

值得注意的是,這里的物化視圖查詢重寫是自動發(fā)生的,同樣也可以使用/*+ rewrite(mv_t) */提示的方式強制發(fā)生查詢重寫。

總結:

盡管優(yōu)化器在用戶透明的情況下改寫了我們的查詢結構,不過通常情況下這都是基于CBO優(yōu)化模式下其判斷較為高效的選擇,這也是我們所期望的,同時為我們提供了一種學習方法,即在寫SQL語句的過程中時刻考慮優(yōu)化器的作用。

您可能感興趣的文章:
  • oracle分區(qū)表之hash分區(qū)表的使用及擴展
  • Oracle 12CR2查詢轉換教程之表擴展詳解

標簽:來賓 玉樹 大興安嶺 贛州 遼寧 長沙 蘇州 棗莊

巨人網(wǎng)絡通訊聲明:本文標題《Oracle CBO幾種基本的查詢轉換詳解》,本文關鍵詞  Oracle,CBO,幾種,基本,的,查詢,;如發(fā)現(xiàn)本文內(nèi)容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Oracle CBO幾種基本的查詢轉換詳解》相關的同類信息!
  • 本頁收集關于Oracle CBO幾種基本的查詢轉換詳解的相關信息資訊供網(wǎng)民參考!
  • 推薦文章
    绥德县| 团风县| 襄汾县| 西盟| 金秀| 洛扎县| 阜平县| 莱芜市| 宜章县| 玉门市| 兰坪| 凉城县| 长汀县| 青龙| 四子王旗| 松桃| 茂名市| 科技| 桦南县| 宝兴县| 本溪市| 大邑县| 安陆市| 北流市| 肥西县| 黄平县| 河东区| 洪江市| 太原市| 上思县| 巨野县| 孝昌县| 涞源县| 绥宁县| 太仆寺旗| 德格县| 仪陇县| 稷山县| 鄯善县| 合水县| 菏泽市|