濮阳杆衣贸易有限公司

主頁 > 知識(shí)庫 > 分析Mysql表讀寫、索引等操作的sql語句效率優(yōu)化問題

分析Mysql表讀寫、索引等操作的sql語句效率優(yōu)化問題

熱門標(biāo)簽:高德地圖標(biāo)注中心個(gè)人注冊(cè) 外呼系統(tǒng)防封號(hào)違法嗎 外呼系統(tǒng)服務(wù) 400電話辦理都選易號(hào)網(wǎng) 電銷機(jī)器人針對(duì)的 高德地圖標(biāo)注模式 如何在高德地圖標(biāo)注新地址 湘潭電銷機(jī)器人咨詢電話 寶應(yīng)電信400電話辦理費(fèi)用

上次我們說到mysql的一些sql查詢方面的優(yōu)化,包括查看explain執(zhí)行計(jì)劃,分析索引等等。今天我們分享一些 分析mysql表讀寫、索引等等操作的sql語句。

閑話不多說,直接上代碼:

反映表的讀寫壓力

SELECT file_name AS file,
    count_read,
    sum_number_of_bytes_read AS total_read,
    count_write,
    sum_number_of_bytes_write AS total_written,
    (sum_number_of_bytes_read + sum_number_of_bytes_write) AS total
 FROM performance_schema.file_summary_by_instance
ORDER BY sum_number_of_bytes_read+ sum_number_of_bytes_write DESC;

反映文件的延遲

SELECT (file_name) AS file,
    count_star AS total,
    CONCAT(ROUND(sum_timer_wait / 3600000000000000, 2), 'h') AS total_latency,
    count_read,
    CONCAT(ROUND(sum_timer_read / 1000000000000, 2), 's') AS read_latency,
    count_write,
    CONCAT(ROUND(sum_timer_write / 3600000000000000, 2), 'h')AS write_latency
 FROM performance_schema.file_summary_by_instance
ORDER BY sum_timer_wait DESC;

table 的讀寫延遲

SELECT object_schema AS table_schema,
       object_name AS table_name,
       count_star AS total,
       CONCAT(ROUND(sum_timer_wait / 3600000000000000, 2), 'h') as total_latency,
       CONCAT(ROUND((sum_timer_wait / count_star) / 1000000, 2), 'us') AS avg_latency,
       CONCAT(ROUND(max_timer_wait / 1000000000, 2), 'ms') AS max_latency
 FROM performance_schema.objects_summary_global_by_type
    ORDER BY sum_timer_wait DESC;

查看表操作頻度

SELECT object_schema AS table_schema,
      object_name AS table_name,
      count_star AS rows_io_total,
      count_read AS rows_read,
      count_write AS rows_write,
      count_fetch AS rows_fetchs,
      count_insert AS rows_inserts,
      count_update AS rows_updates,
      count_delete AS rows_deletes,
       CONCAT(ROUND(sum_timer_fetch / 3600000000000000, 2), 'h') AS fetch_latency,
       CONCAT(ROUND(sum_timer_insert / 3600000000000000, 2), 'h') AS insert_latency,
       CONCAT(ROUND(sum_timer_update / 3600000000000000, 2), 'h') AS update_latency,
       CONCAT(ROUND(sum_timer_delete / 3600000000000000, 2), 'h') AS delete_latency
   FROM performance_schema.table_io_waits_summary_by_table
    ORDER BY sum_timer_wait DESC ;

索引狀況

SELECT OBJECT_SCHEMA AS table_schema,
        OBJECT_NAME AS table_name,
        INDEX_NAME as index_name,
        COUNT_FETCH AS rows_fetched,
        CONCAT(ROUND(SUM_TIMER_FETCH / 3600000000000000, 2), 'h') AS select_latency,
        COUNT_INSERT AS rows_inserted,
        CONCAT(ROUND(SUM_TIMER_INSERT / 3600000000000000, 2), 'h') AS insert_latency,
        COUNT_UPDATE AS rows_updated,
        CONCAT(ROUND(SUM_TIMER_UPDATE / 3600000000000000, 2), 'h') AS update_latency,
        COUNT_DELETE AS rows_deleted,
        CONCAT(ROUND(SUM_TIMER_DELETE / 3600000000000000, 2), 'h')AS delete_latency
FROM performance_schema.table_io_waits_summary_by_index_usage
WHERE index_name IS NOT NULL
ORDER BY sum_timer_wait DESC;

全表掃描情況

SELECT object_schema,
    object_name,
    count_read AS rows_full_scanned
 FROM performance_schema.table_io_waits_summary_by_index_usage
WHERE index_name IS NULL
  AND count_read > 0
ORDER BY count_read DESC;

沒有使用的index

SELECT object_schema,
    object_name,
    index_name
  FROM performance_schema.table_io_waits_summary_by_index_usage
 WHERE index_name IS NOT NULL
  AND count_star = 0
  AND object_schema not in ('mysql','v_monitor')
  AND index_name > 'PRIMARY'
 ORDER BY object_schema, object_name;

糟糕的sql問題摘要

SELECT (DIGEST_TEXT) AS query,
    SCHEMA_NAME AS db,
    IF(SUM_NO_GOOD_INDEX_USED > 0 OR SUM_NO_INDEX_USED > 0, '*', '') AS full_scan,
    COUNT_STAR AS exec_count,
    SUM_ERRORS AS err_count,
    SUM_WARNINGS AS warn_count,
    (SUM_TIMER_WAIT) AS total_latency,
    (MAX_TIMER_WAIT) AS max_latency,
    (AVG_TIMER_WAIT) AS avg_latency,
    (SUM_LOCK_TIME) AS lock_latency,
    format(SUM_ROWS_SENT,0) AS rows_sent,
    ROUND(IFNULL(SUM_ROWS_SENT / NULLIF(COUNT_STAR, 0), 0)) AS rows_sent_avg,
    SUM_ROWS_EXAMINED AS rows_examined,
    ROUND(IFNULL(SUM_ROWS_EXAMINED / NULLIF(COUNT_STAR, 0), 0)) AS rows_examined_avg,
    SUM_CREATED_TMP_TABLES AS tmp_tables,
    SUM_CREATED_TMP_DISK_TABLES AS tmp_disk_tables,
    SUM_SORT_ROWS AS rows_sorted,
    SUM_SORT_MERGE_PASSES AS sort_merge_passes,
    DIGEST AS digest,
    FIRST_SEEN AS first_seen,
    LAST_SEEN as last_seen
  FROM performance_schema.events_statements_summary_by_digest d
where d
ORDER BY SUM_TIMER_WAIT DESC
limit 20;

掌握這些sql,你能輕松知道你的庫那些表存在問題,然后考慮怎么去優(yōu)化。   

總結(jié)

以上就是這篇文章的全部內(nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,謝謝大家對(duì)腳本之家的支持。如果你想了解更多相關(guān)內(nèi)容請(qǐng)查看下面相關(guān)鏈接

您可能感興趣的文章:
  • MySql如何查看索引并實(shí)現(xiàn)優(yōu)化
  • MySQL如何基于Explain關(guān)鍵字優(yōu)化索引功能
  • MySQL利用索引優(yōu)化ORDER BY排序語句的方法
  • MySQL 函數(shù)索引的優(yōu)化方案
  • Mysql索引性能優(yōu)化問題解決方案
  • MySQL性能優(yōu)化之如何高效正確的使用索引
  • 一篇文章掌握MySQL的索引查詢優(yōu)化技巧
  • MySQL數(shù)據(jù)庫優(yōu)化之索引實(shí)現(xiàn)原理與用法分析
  • MySQL中or、in、union與索引優(yōu)化詳析
  • MySQL優(yōu)化中B樹索引知識(shí)點(diǎn)總結(jié)
  • 淺談MySQL的B樹索引與索引優(yōu)化小結(jié)
  • 淺談MySQL索引優(yōu)化分析
  • MySQL如何優(yōu)化索引

標(biāo)簽:佛山 黔南 賀州 蘭州 南充 宿遷 馬鞍山 黃山

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《分析Mysql表讀寫、索引等操作的sql語句效率優(yōu)化問題》,本文關(guān)鍵詞  分析,Mysql,表,讀寫,索引,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《分析Mysql表讀寫、索引等操作的sql語句效率優(yōu)化問題》相關(guān)的同類信息!
  • 本頁收集關(guān)于分析Mysql表讀寫、索引等操作的sql語句效率優(yōu)化問題的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    天台县| 苏尼特右旗| 定安县| 平定县| 昌宁县| 桐梓县| 浦江县| 东台市| 香河县| 赤壁市| 普陀区| 老河口市| 盘锦市| 桂阳县| 安岳县| 马公市| 孟津县| 凌云县| 尖扎县| 寿阳县| 徐闻县| 武威市| 宣武区| 海伦市| 古田县| 罗田县| 曲阜市| 马关县| 奈曼旗| 都昌县| 南平市| 潍坊市| 高雄县| 临武县| 聂荣县| 肇庆市| 黑龙江省| 镇雄县| 沂南县| 康定县| 延庆县|