先來看一個栗子
EXPLAIN select * from employees where name > 'a';
![](/d/20211018/0b5682f77a42fe2f0ddfa933cd147de6.gif)
如果用name索引查找數(shù)據(jù)需要遍歷name字段聯(lián)合索引樹,然后根據(jù)遍歷出來的主鍵值去主鍵索引樹里再去查出最終數(shù)據(jù),成本比全表掃描還高。
可以用覆蓋索引優(yōu)化,這樣只需要遍歷name字段的聯(lián)合索引樹就可以拿到所有的結果。
EXPLAIN select name,age,position from employees where name > 'a';
![](/d/20211018/c7c5499a8ec665d105d95c897e03fb61.gif)
可以看到通過select出的字段是覆蓋索引,MySQL底層使用了索引優(yōu)化。在看另一個case:
EXPLAIN select * from employees where name > 'zzz';
![](/d/20211018/655e7feb3d225a2534027a37446d9f8c.gif)
對于上面的這兩種 name>'a' 和 name>'zzz'的執(zhí)行結果, mysql最終是否選擇走索引或者一張表涉及多個索引, mysql最終如何選擇索引,可以通過trace工具來一查究竟,開啟trace工具會影響mysql性能,所以只能臨時分析sql使用,用完之后需要立即關閉。
SET SESSION optimizer_trace="enabled=on",end_markers_in_json=on; --開啟trace
SELECT * FROM employees WHERE name > 'a' ORDER BY position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;
看trace字段:
{
"steps": [
{
"join_preparation": { --第一階段:SQl準備階段
"select#": 1,
"steps": [
{
"expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'a') order by `employees`.`position`"
}
] /* steps */
} /* join_preparation */
},
{
"join_optimization": { --第二階段:SQL優(yōu)化階段
"select#": 1,
"steps": [
{
"condition_processing": { --條件處理
"condition": "WHERE",
"original_condition": "(`employees`.`name` > 'a')",
"steps": [
{
"transformation": "equality_propagation",
"resulting_condition": "(`employees`.`name` > 'a')"
},
{
"transformation": "constant_propagation",
"resulting_condition": "(`employees`.`name` > 'a')"
},
{
"transformation": "trivial_condition_removal",
"resulting_condition": "(`employees`.`name` > 'a')"
}
] /* steps */
} /* condition_processing */
},
{
"table_dependencies": [ --表依賴詳情
{
"table": "`employees`",
"row_may_be_null": false,
"map_bit": 0,
"depends_on_map_bits": [
] /* depends_on_map_bits */
}
] /* table_dependencies */
},
{
"ref_optimizer_key_uses": [
] /* ref_optimizer_key_uses */
},
{
"rows_estimation": [ --預估標的訪問成本
{
"table": "`employees`",
"range_analysis": {
"table_scan": { --全表掃描情況
"rows": 3, --掃描行數(shù)
"cost": 3.7 --查詢成本
} /* table_scan */,
"potential_range_indices": [ --查詢可能使用的索引
{
"index": "PRIMARY", --主鍵索引
"usable": false,
"cause": "not_applicable"
},
{
"index": "idx_name_age_position", --輔助索引
"usable": true,
"key_parts": [
"name",
"age",
"position",
"id"
] /* key_parts */
},
{
"index": "idx_age",
"usable": false,
"cause": "not_applicable"
}
] /* potential_range_indices */,
"setup_range_conditions": [
] /* setup_range_conditions */,
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
} /* group_index_range */,
"analyzing_range_alternatives": { ‐‐分析各個索引使用成本
"range_scan_alternatives": [
{
"index": "idx_name_age_position",
"ranges": [
"a name"
] /* ranges */,
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false, ‐‐是否使用覆蓋索引
"rows": 3, --‐‐索引掃描行數(shù)
"cost": 4.61, --索引使用成本
"chosen": false, ‐‐是否選擇該索引
"cause": "cost"
}
] /* range_scan_alternatives */,
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
} /* analyzing_roworder_intersect */
} /* analyzing_range_alternatives */
} /* range_analysis */
}
] /* rows_estimation */
},
{
"considered_execution_plans": [
{
"plan_prefix": [
] /* plan_prefix */,
"table": "`employees`",
"best_access_path": {
"considered_access_paths": [
{
"access_type": "scan",
"rows": 3,
"cost": 1.6,
"chosen": true,
"use_tmp_table": true
}
] /* considered_access_paths */
} /* best_access_path */,
"cost_for_plan": 1.6,
"rows_for_plan": 3,
"sort_cost": 3,
"new_cost_for_plan": 4.6,
"chosen": true
}
] /* considered_execution_plans */
},
{
"attaching_conditions_to_tables": {
"original_condition": "(`employees`.`name` > 'a')",
"attached_conditions_computation": [
] /* attached_conditions_computation */,
"attached_conditions_summary": [
{
"table": "`employees`",
"attached": "(`employees`.`name` > 'a')"
}
] /* attached_conditions_summary */
} /* attaching_conditions_to_tables */
},
{
"clause_processing": {
"clause": "ORDER BY",
"original_clause": "`employees`.`position`",
"items": [
{
"item": "`employees`.`position`"
}
] /* items */,
"resulting_clause_is_simple": true,
"resulting_clause": "`employees`.`position`"
} /* clause_processing */
},
{
"refine_plan": [
{
"table": "`employees`",
"access_type": "table_scan"
}
] /* refine_plan */
},
{
"reconsidering_access_paths_for_index_ordering": {
"clause": "ORDER BY",
"index_order_summary": {
"table": "`employees`",
"index_provides_order": false,
"order_direction": "undefined",
"index": "unknown",
"plan_changed": false
} /* index_order_summary */
} /* reconsidering_access_paths_for_index_ordering */
}
] /* steps */
} /* join_optimization */
},
{
"join_execution": { --第三階段:SQL執(zhí)行階段
"select#": 1,
"steps": [
{
"filesort_information": [
{
"direction": "asc",
"table": "`employees`",
"field": "position"
}
] /* filesort_information */,
"filesort_priority_queue_optimization": {
"usable": false,
"cause": "not applicable (no LIMIT)"
} /* filesort_priority_queue_optimization */,
"filesort_execution": [
] /* filesort_execution */,
"filesort_summary": {
"rows": 3,
"examined_rows": 3,
"number_of_tmp_files": 0,
"sort_buffer_size": 200704,
"sort_mode": "sort_key, additional_fields>"
} /* filesort_summary */
}
] /* steps */
} /* join_execution */
}
] /* steps */
}
全表掃描的成本低于索引掃描, 索引MySQL最終會選擇全表掃描。
SELECT * FROM employees WHERE name > 'zzz' ORDER BY position;
SELECT * FROM information_schema.OPTIMIZER_TRACE;
{
"steps": [
{
"join_preparation": {
"select#": 1,
"steps": [
{
"expanded_query": "/* select#1 */ select `employees`.`id` AS `id`,`employees`.`name` AS `name`,`employees`.`age` AS `age`,`employees`.`position` AS `position`,`employees`.`hire_time` AS `hire_time` from `employees` where (`employees`.`name` > 'zzz') order by `employees`.`position`"
}
] /* steps */
} /* join_preparation */
},
{
"join_optimization": {
"select#": 1,
"steps": [
{
"condition_processing": {
"condition": "WHERE",
"original_condition": "(`employees`.`name` > 'zzz')",
"steps": [
{
"transformation": "equality_propagation",
"resulting_condition": "(`employees`.`name` > 'zzz')"
},
{
"transformation": "constant_propagation",
"resulting_condition": "(`employees`.`name` > 'zzz')"
},
{
"transformation": "trivial_condition_removal",
"resulting_condition": "(`employees`.`name` > 'zzz')"
}
] /* steps */
} /* condition_processing */
},
{
"table_dependencies": [
{
"table": "`employees`",
"row_may_be_null": false,
"map_bit": 0,
"depends_on_map_bits": [
] /* depends_on_map_bits */
}
] /* table_dependencies */
},
{
"ref_optimizer_key_uses": [
] /* ref_optimizer_key_uses */
},
{
"rows_estimation": [
{
"table": "`employees`",
"range_analysis": {
"table_scan": {
"rows": 3,
"cost": 3.7
} /* table_scan */,
"potential_range_indices": [
{
"index": "PRIMARY",
"usable": false,
"cause": "not_applicable"
},
{
"index": "idx_name_age_position",
"usable": true,
"key_parts": [
"name",
"age",
"position",
"id"
] /* key_parts */
},
{
"index": "idx_age",
"usable": false,
"cause": "not_applicable"
}
] /* potential_range_indices */,
"setup_range_conditions": [
] /* setup_range_conditions */,
"group_index_range": {
"chosen": false,
"cause": "not_group_by_or_distinct"
} /* group_index_range */,
"analyzing_range_alternatives": {
"range_scan_alternatives": [
{
"index": "idx_name_age_position",
"ranges": [
"zzz name"
] /* ranges */,
"index_dives_for_eq_ranges": true,
"rowid_ordered": false,
"using_mrr": false,
"index_only": false,
"rows": 1,
"cost": 2.21,
"chosen": true
}
] /* range_scan_alternatives */,
"analyzing_roworder_intersect": {
"usable": false,
"cause": "too_few_roworder_scans"
} /* analyzing_roworder_intersect */
} /* analyzing_range_alternatives */,
"chosen_range_access_summary": {
"range_access_plan": {
"type": "range_scan",
"index": "idx_name_age_position",
"rows": 1,
"ranges": [
"zzz name"
] /* ranges */
} /* range_access_plan */,
"rows_for_plan": 1,
"cost_for_plan": 2.21,
"chosen": true
} /* chosen_range_access_summary */
} /* range_analysis */
}
] /* rows_estimation */
},
{
"considered_execution_plans": [
{
"plan_prefix": [
] /* plan_prefix */,
"table": "`employees`",
"best_access_path": {
"considered_access_paths": [
{
"access_type": "range",
"rows": 1,
"cost": 2.41,
"chosen": true,
"use_tmp_table": true
}
] /* considered_access_paths */
} /* best_access_path */,
"cost_for_plan": 2.41,
"rows_for_plan": 1,
"sort_cost": 1,
"new_cost_for_plan": 3.41,
"chosen": true
}
] /* considered_execution_plans */
},
{
"attaching_conditions_to_tables": {
"original_condition": "(`employees`.`name` > 'zzz')",
"attached_conditions_computation": [
] /* attached_conditions_computation */,
"attached_conditions_summary": [
{
"table": "`employees`",
"attached": "(`employees`.`name` > 'zzz')"
}
] /* attached_conditions_summary */
} /* attaching_conditions_to_tables */
},
{
"clause_processing": {
"clause": "ORDER BY",
"original_clause": "`employees`.`position`",
"items": [
{
"item": "`employees`.`position`"
}
] /* items */,
"resulting_clause_is_simple": true,
"resulting_clause": "`employees`.`position`"
} /* clause_processing */
},
{
"refine_plan": [
{
"table": "`employees`",
"pushed_index_condition": "(`employees`.`name` > 'zzz')",
"table_condition_attached": null,
"access_type": "range"
}
] /* refine_plan */
},
{
"reconsidering_access_paths_for_index_ordering": {
"clause": "ORDER BY",
"index_order_summary": {
"table": "`employees`",
"index_provides_order": false,
"order_direction": "undefined",
"index": "idx_name_age_position",
"plan_changed": false
} /* index_order_summary */
} /* reconsidering_access_paths_for_index_ordering */
}
] /* steps */
} /* join_optimization */
},
{
"join_execution": {
"select#": 1,
"steps": [
{
"filesort_information": [
{
"direction": "asc",
"table": "`employees`",
"field": "position"
}
] /* filesort_information */,
"filesort_priority_queue_optimization": {
"usable": false,
"cause": "not applicable (no LIMIT)"
} /* filesort_priority_queue_optimization */,
"filesort_execution": [
] /* filesort_execution */,
"filesort_summary": {
"rows": 0,
"examined_rows": 0,
"number_of_tmp_files": 0,
"sort_buffer_size": 200704,
"sort_mode": "sort_key, additional_fields>"
} /* filesort_summary */
}
] /* steps */
} /* join_execution */
}
] /* steps */
}
查看trace字段可知索引掃描的成本低于全表掃描的成本,所以MySQL最終選擇索引掃描。
SET SESSION optimizer_trace="enabled=off"; -- 關閉trace
總結
以上所述是小編給大家介紹的MySQL如何選擇合適的索引,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對腳本之家網站的支持!如果你覺得本文對你有幫助,歡迎轉載,煩請注明出處,謝謝!
您可能感興趣的文章:- 為什么MySQL數(shù)據(jù)庫索引選擇使用B+樹?
- 探究MySQL優(yōu)化器對索引和JOIN順序的選擇
- mysql的in會不會讓索引失效?
- MySQL組合索引與最左匹配原則詳解
- Mysql如何適當?shù)奶砑铀饕榻B
- 一個案例徹底弄懂如何正確使用mysql inndb聯(lián)合索引
- MySQL中有哪些情況下數(shù)據(jù)庫索引會失效詳析
- 深入淺析Mysql聯(lián)合索引最左匹配原則
- Mysql使用索引的正確方法及索引原理詳解
- MySQL的索引詳解
- MySQL索引使用說明(單列索引和多列索引)