1. 利用resnet18做遷移學(xué)習(xí)
import torch
from torchvision import models
if __name__ == "__main__":
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = 'cpu'
print("-----device:{}".format(device))
print("-----Pytorch version:{}".format(torch.__version__))
input_tensor = torch.zeros(1, 3, 100, 100)
print('input_tensor:', input_tensor.shape)
pretrained_file = "model/resnet18-5c106cde.pth"
model = models.resnet18()
model.load_state_dict(torch.load(pretrained_file))
model.eval()
out = model(input_tensor)
print("out:", out.shape, out[0, 0:10])
結(jié)果輸出:
input_tensor: torch.Size([1, 3, 100, 100])
out: torch.Size([1, 1000]) tensor([ 0.4010, 0.8436, 0.3072, 0.0627, 0.4446, 0.8470, 0.1882, 0.7012,0.2988, -0.7574], grad_fn=SliceBackward>)
如果,我們修改了resnet18的網(wǎng)絡(luò)結(jié)構(gòu),如何將原來預(yù)訓(xùn)練模型參數(shù)(resnet18-5c106cde.pth)遷移到新的resnet18網(wǎng)絡(luò)中呢?
比如,這里將官方的resnet18的self.layer4 = self._make_layer(block, 512, layers[3], stride=2)改為:self.layer44 = self._make_layer(block, 512, layers[3], stride=2)
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer44 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer44(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
這時,直接加載模型:
model = models.resnet18()
model.load_state_dict(torch.load(pretrained_file))
這時,肯定會報錯,類似:Missing key(s) in state_dict或者Unexpected key(s) in state_dict的錯誤:
RuntimeError: Error(s) in loading state_dict for ResNet:
Missing key(s) in state_dict: "layer44.0.conv1.weight", "layer44.0.bn1.weight", "layer44.0.bn1.bias", "layer44.0.bn1.running_mean", "layer44.0.bn1.running_var", "layer44.0.conv2.weight", "layer44.0.bn2.weight", "layer44.0.bn2.bias", "layer44.0.bn2.running_mean", "layer44.0.bn2.running_var", "layer44.0.downsample.0.weight", "layer44.0.downsample.1.weight", "layer44.0.downsample.1.bias", "layer44.0.downsample.1.running_mean", "layer44.0.downsample.1.running_var", "layer44.1.conv1.weight", "layer44.1.bn1.weight", "layer44.1.bn1.bias", "layer44.1.bn1.running_mean", "layer44.1.bn1.running_var", "layer44.1.conv2.weight", "layer44.1.bn2.weight", "layer44.1.bn2.bias", "layer44.1.bn2.running_mean", "layer44.1.bn2.running_var".
Unexpected key(s) in state_dict: "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias".
Process finished with
RuntimeError: Error(s) in loading state_dict for ResNet:
Unexpected key(s) in state_dict: "layer4.0.conv1.weight", "layer4.0.bn1.running_mean", "layer4.0.bn1.running_var", "layer4.0.bn1.weight", "layer4.0.bn1.bias", "layer4.0.conv2.weight", "layer4.0.bn2.running_mean", "layer4.0.bn2.running_var", "layer4.0.bn2.weight", "layer4.0.bn2.bias", "layer4.0.downsample.0.weight", "layer4.0.downsample.1.running_mean", "layer4.0.downsample.1.running_var", "layer4.0.downsample.1.weight", "layer4.0.downsample.1.bias", "layer4.1.conv1.weight", "layer4.1.bn1.running_mean", "layer4.1.bn1.running_var", "layer4.1.bn1.weight", "layer4.1.bn1.bias", "layer4.1.conv2.weight", "layer4.1.bn2.running_mean", "layer4.1.bn2.running_var", "layer4.1.bn2.weight", "layer4.1.bn2.bias".
我們希望將原來預(yù)訓(xùn)練模型參數(shù)(resnet18-5c106cde.pth)遷移到新的resnet18網(wǎng)絡(luò),當然只能遷移二者相同的模型參數(shù),不同的參數(shù)還是隨機初始化的.
def transfer_model(pretrained_file, model):
'''
只導(dǎo)入pretrained_file部分模型參數(shù)
tensor([-0.7119, 0.0688, -1.7247, -1.7182, -1.2161, -0.7323, -2.1065, -0.5433,-1.5893, -0.5562]
update:
D.update([E, ]**F) -> None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
:param pretrained_file:
:param model:
:return:
'''
pretrained_dict = torch.load(pretrained_file) # get pretrained dict
model_dict = model.state_dict() # get model dict
# 在合并前(update),需要去除pretrained_dict一些不需要的參數(shù)
pretrained_dict = transfer_state_dict(pretrained_dict, model_dict)
model_dict.update(pretrained_dict) # 更新(合并)模型的參數(shù)
model.load_state_dict(model_dict)
return model
def transfer_state_dict(pretrained_dict, model_dict):
'''
根據(jù)model_dict,去除pretrained_dict一些不需要的參數(shù),以便遷移到新的網(wǎng)絡(luò)
url: https://blog.csdn.net/qq_34914551/article/details/87871134
:param pretrained_dict:
:param model_dict:
:return:
'''
# state_dict2 = {k: v for k, v in save_model.items() if k in model_dict.keys()}
state_dict = {}
for k, v in pretrained_dict.items():
if k in model_dict.keys():
# state_dict.setdefault(k, v)
state_dict[k] = v
else:
print("Missing key(s) in state_dict :{}".format(k))
return state_dict
if __name__ == "__main__":
input_tensor = torch.zeros(1, 3, 100, 100)
print('input_tensor:', input_tensor.shape)
pretrained_file = "model/resnet18-5c106cde.pth"
# model = resnet18()
# model.load_state_dict(torch.load(pretrained_file))
# model.eval()
# out = model(input_tensor)
# print("out:", out.shape, out[0, 0:10])
model1 = resnet18()
model1 = transfer_model(pretrained_file, model1)
out1 = model1(input_tensor)
print("out1:", out1.shape, out1[0, 0:10])
2. 修改網(wǎng)絡(luò)名稱并遷移學(xué)習(xí)
上面的例子,只是將官方的resnet18的self.layer4 = self._make_layer(block, 512, layers[3], stride=2)改為了:self.layer44 = self._make_layer(block, 512, layers[3], stride=2),我們僅僅是修改了一個網(wǎng)絡(luò)名稱而已,就導(dǎo)致 model.load_state_dict(torch.load(pretrained_file))出錯,
那么,我們?nèi)绾螌㈩A(yù)訓(xùn)練模型"model/resnet18-5c106cde.pth"轉(zhuǎn)換成符合新的網(wǎng)絡(luò)的模型參數(shù)呢?
方法很簡單,只需要將resnet18-5c106cde.pth的模型參數(shù)中所有前綴為layer4的名稱,改為layer44即可
本人已經(jīng)定義好了方法:
modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix)
def string_rename(old_string, new_string, start, end):
new_string = old_string[:start] + new_string + old_string[end:]
return new_string
def modify_model(pretrained_file, model, old_prefix, new_prefix):
'''
:param pretrained_file:
:param model:
:param old_prefix:
:param new_prefix:
:return:
'''
pretrained_dict = torch.load(pretrained_file)
model_dict = model.state_dict()
state_dict = modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix)
model.load_state_dict(state_dict)
return model
def modify_state_dict(pretrained_dict, model_dict, old_prefix, new_prefix):
'''
修改model dict
:param pretrained_dict:
:param model_dict:
:param old_prefix:
:param new_prefix:
:return:
'''
state_dict = {}
for k, v in pretrained_dict.items():
if k in model_dict.keys():
# state_dict.setdefault(k, v)
state_dict[k] = v
else:
for o, n in zip(old_prefix, new_prefix):
prefix = k[:len(o)]
if prefix == o:
kk = string_rename(old_string=k, new_string=n, start=0, end=len(o))
print("rename layer modules:{}-->{}".format(k, kk))
state_dict[kk] = v
return state_dict
if __name__ == "__main__":
input_tensor = torch.zeros(1, 3, 100, 100)
print('input_tensor:', input_tensor.shape)
pretrained_file = "model/resnet18-5c106cde.pth"
# model = models.resnet18()
# model.load_state_dict(torch.load(pretrained_file))
# model.eval()
# out = model(input_tensor)
# print("out:", out.shape, out[0, 0:10])
#
# model1 = resnet18()
# model1 = transfer_model(pretrained_file, model1)
# out1 = model1(input_tensor)
# print("out1:", out1.shape, out1[0, 0:10])
#
new_file = "new_model.pth"
model = resnet18()
new_model = modify_model(pretrained_file, model, old_prefix=["layer4"], new_prefix=["layer44"])
torch.save(new_model.state_dict(), new_file)
model2 = resnet18()
model2.load_state_dict(torch.load(new_file))
model2.eval()
out2 = model2(input_tensor)
print("out2:", out2.shape, out2[0, 0:10])
這時,輸出,跟之前一模一樣了。
out: torch.Size([1, 1000]) tensor([ 0.4010, 0.8436, 0.3072, 0.0627, 0.4446, 0.8470, 0.1882, 0.7012,0.2988, -0.7574], grad_fn=SliceBackward>)
3.去除原模型的某些模塊
下面是在不修改原模型代碼的情況下,通過"resnet18.named_children()"和"resnet18.children()"的方法去除子模塊"fc"和"avgpool"
import torch
import torchvision.models as models
from collections import OrderedDict
if __name__=="__main__":
resnet18 = models.resnet18(False)
print("resnet18",resnet18)
# use named_children()
resnet18_v1 = OrderedDict(resnet18.named_children())
# remove avgpool,fc
resnet18_v1.pop("avgpool")
resnet18_v1.pop("fc")
resnet18_v1 = torch.nn.Sequential(resnet18_v1)
print("resnet18_v1",resnet18_v1)
# use children
resnet18_v2 = torch.nn.Sequential(*list(resnet18.children())[:-2])
print(resnet18_v2,resnet18_v2)
補充:pytorch導(dǎo)入(部分)模型參數(shù)
背景介紹:
我的想法是把一個預(yù)訓(xùn)練的網(wǎng)絡(luò)的參數(shù)導(dǎo)入到我的模型中,但是預(yù)訓(xùn)練模型的參數(shù)只是我模型參數(shù)的一小部分,怎樣導(dǎo)進去不出差錯了,請來聽我說說。
解法
首先把你需要添加參數(shù)的那一小部分模型提取出來,并新建一個類進行重新定義,如圖向Alexnet中添加前三層的參數(shù),重新定義前三層。
![](/d/20211017/d18abf7ae5600be919c8dfccef272b89.gif)
接下來就是導(dǎo)入?yún)?shù)
checkpoint = torch.load(config.pretrained_model)
# change name and load parameters
model_dict = model.net1.state_dict()
checkpoint = {k.replace('features.features', 'featureExtract1'): v for k, v in checkpoint.items()}
checkpoint = {k:v for k,v in checkpoint.items() if k in model_dict.keys()}
model_dict.update(checkpoint)
model.net1.load_state_dict(model_dict)
程序如上圖所示,主要是第三、四句,第三是替換,別人訓(xùn)練的模型參數(shù)的鍵和自己的定義的會不一樣,所以需要替換成自己的;第四句有個if用于判斷導(dǎo)入需要的參數(shù)。其他語句都相當于是模板,套用即可。
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
您可能感興趣的文章:- PyTorch 遷移學(xué)習(xí)實踐(幾分鐘即可訓(xùn)練好自己的模型)
- PyTorch一小時掌握之遷移學(xué)習(xí)篇